小样本学习(FSL):Few-shot Learning 综述【模型微调(Fine-tunning)、数据增强、迁移学习(Transfer Learning)】

本文综述了小样本学习(Few-shot Learning)的方法,包括基于模型微调、数据增强和迁移学习。模型微调通过在大规模数据上预训练,然后在小样本上微调;数据增强通过无标签数据、数据合成和特征增强提高样本多样性;迁移学习则利用源领域知识迁移到目标领域。实验表明,数据量增加有助于提高分类效果。小样本学习仍面临预训练模型、深度学习可解释性、数据集挑战等问题,未来研究方向包括无标注数据利用、提高模型可解释性、设计更好的度量和元学习方法、探索图神经网络应用以及融合多种方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类非常常见,但如果每个类只有几个标注样本,怎么办呢?

比如:我们打造了一个智能对话开发平台以赋能第三方开发者来开发各自业务场景中的任务型对话,其中一个重要功能就是对意图进行分类。大量平台用户在创建一个新对话任务时,并没有大量标注数据,每个意图往往只有几个或十几个样本。

面对这类问题,有一个专门的机器学习分支——Few-shot Learning 来进行研究和解决。

一、小样本学习方法

1、基于模型微调的小样本学习

基于模型微调的方法是小样本学习较为传统的方法,该方法通常在大规模数据上预训练模型,在目标小样
本数据集上对神经网络模型的全连接层或者顶端几层进行参数微调,得到微调后的模型.若目标数据集和源数
据集分布较类似,可采用模型微调的方法.

为了使微调后的小样本分类模型取得较好的效果,使用何种微调方法需要被考虑.Howard 等人[14]在 2018
年提出了一个通用微调语言模型(universal language model fine-tuning,简称 ULMFit).与其他模型不同的是,此方
法使用了语言模型而非深度神经网络.该模型分为3个阶段:(1) 语言模型预训练;(2) 语言模型微调;(3) 分类器
微调.该模型的创新点在于改变学习速率来微调语言模型,主要体现在两个方面.

  1. 传统方法认为,模型每一层学习速率相同;而ULMFit中,语言模型的每一层学习速率均不相同.模型底 层表示普遍特征,这些特征不
小样本学习是指在数据集非常小的情况下进行机器学习任务。在这种情况下,模型容易过拟合且泛化能力较弱。为了解决这个问题,可以使用数据增强方法来扩充数据集,从而提高模型的泛化能力。下面介绍三种常用的数据增强方法。 1. 几何变换 几何变换是指对图像进行平移、旋转、缩放等操作,生成新的图像。这种方法可以通过简单的变换来扩充数据集,同时可以增强模型对物体位置、大小、方向等的鲁棒性。常用的几何变换方法有旋转、平移、缩放、裁剪等。这些方法可以使用OpenCV、PIL等图像处理库来实现。 2. 颜色变换 颜色变换是指对图像的颜色进行调整,生成新的图像。这种方法可以通过改变亮度、对比度、色彩平衡等方式来扩充数据集,同时可以增强模型对不同光照条件下的鲁棒性。常用的颜色变换方法有亮度调整、对比度增强、色彩平衡调整等。这些方法可以使用OpenCV、PIL等图像处理库来实现。 3. 增加噪声 增加噪声是指对图像中加入一些随机噪声,生成新的图像。这种方法可以模拟许多真实场景下的噪声,如图像压缩、传感器噪声等,从而提高模型的泛化能力。常用的噪声方法有高斯噪声、椒盐噪声、泊松噪声等。这些方法可以使用numpy等库来实现。 以上三种方法是常用的数据增强方法,可以通过组合使用来扩充数据集。同时,也可以根据具体任务的特点,选择合适的数据增强方法
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值