Multi-Label Image Classification(多标签图像分类)

Multi-Label Classification
首先分清一下multiclass和multilabel:

  • 多类分类(Multiclass classification): 表示分类任务中有多个类别, 且假设每个样本都被设置了一个且仅有一个标签。比如从100个分类中击中一个。
  • 多标签分类(Multilabel classification): 给每个样本一系列的目标标签,即表示的是样本各属性而不是相互排斥的。比如图片中有很多的概念如天空海洋人等等,需要预测出一个概念集合。

Challenge
多标签任务的难度主要集中在以下问题:

  • 标签数量较大且基本会呈现长尾形态。
  • 短视频内容标签的标准很难统一,标签系统可变,且往往类标之间相互依赖并不独立。
  • absence标签占比较高,即标注的标签并不能完美覆盖所有概念面。
  • 标签往往较短语义少,理解困难。

Solution
现有的方法应对multi的预测主要有2大路线:

  • 改造数据适应算法:将多个类别合并成单个类别。
  • 改造算法适应数据:控制激活函数阈值得到结果。

而一般研究最多的应对relation会有3种策略:

  • 一阶策略:忽略和其它标签的相关性,比如把多标签分解成多个独立的二分类问题。
  • 二阶策略:考虑标签之间的成对关联,比如为相关标签和不相关标签排序。
  • 高阶策略:考虑多个标签之间的关联,比如对每个标签考虑所有其它标签的影响。

接下来博主主要会整理一些比较重要的论文。

在这里插入图片描述
[arxiv2016] Multi-label Image Classification with Regional Latent Semantic Dependencies
早期的backbone基本都是先对图像进行理解,然后通过一个label预测器得到结果。这篇文章就是属于比较经典的架构了,模型如上图,为了预测小物体,作者提出了一个区域潜在语义依赖模型(RLSD),基本就是先利用目标检测RPN得到多个依赖标签的局部区域,然后把这写区域region送到LSTM去发掘区域层次上潜在的语义依赖,最后用maxpooling得到预测结果。

在这里插入图片描述
[CVPR2019] Multi-Label Image Recognition with Graph Convolutional Networks
前面提到的挑战中的一点就是标签之间的关系如何挖掘,上一篇文章是尝试用LSTM来捕捉,但当GCN火爆起来的时候,Graph的结构就是十分适合建模标签之间的关系了。这篇文章就是利用GCN在多个标签之间传播信息,从而学习每个图像标签的相互依赖关系。

模型架构如上图,上半部分和通用的架构类似都是用图像特征(ResNet-101)到标签预测的pipeline,重点就是下半部分的标

极度多标签文本分类是指将一个文本样本分类到多个标签中,而且标签的数量非常庞大。由于标签的种类多样且数量巨大,传统的文本分类方法难以满足这种需求,因此出现了基于相关性网络的方法。 相关性网络是一种用于表示文本和标签之间相关性的图结构。它基于共现性原理,计算文本和标签之间的关联程度,并构建一个稠密连接的图模型。图中的节点表示文本和标签,边表示它们之间的相关性。 构建相关性网络的过程分为两步。首先,通过对训练集中的文本数据进行分析,我们可以计算文本和标签之间的共现频率或其他统计信息。这些信息将被用来度量它们之间的相关性。其次,基于相关性计算结果,我们可以构建相应的相关性网络。在网络中,相关性得分高的节点之间将被连接起来,形成密集的连接图模型。 通过相关性网络,我们可以进行极度多标签文本分类。当我们有一个新的文本样本需要分类时,可以利用之前构建好的相关性网络进行预测。通过计算该文本与网络中所有标签的相关性,可以得到每个标签与该文本的相关性得分。然后,我们可以根据这些得分来决定最终的分类结果。 与传统的多标签文本分类方法相比,基于相关性网络的方法具有以下优点:首先,它可以处理大规模的标签集合,适用于极度多标签的情况。其次,它能够考虑到文本和标签之间的相关性,提高分类的准确性。最后,相关性网络可以根据实际应用场景进行灵活的调整和优化,以达到更好的分类效果。 综上所述,基于相关性网络的方法为极度多标签文本分类提供了一种有效的解决方案,有望在实际应用中发挥重要的作用。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值