【论文】《Neural Point Process for Learning Spatiotemporal Event Dynamics》

论文提出NeuralPointProcess,一种能直接建模事件序列的神经网络框架,无需时间或空间离散化。通过最大似然训练和拉普拉斯近似,该模型能学习复杂时空交互并生成新事件序列,表现优于传统模型,在医疗和犯罪数据集上验证了其有效性和预测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇论文提出了一种新的神经点过程模型(Neural Point Process),用于学习时空事件动态。主要贡献包括:

  1. 提出了一个新的神经网络框架,可以直接对事件故事进行建模,而不需要离散化时间或空间。该框架可以学习事件之间的复杂时空交互作用和依赖关系。
  2. 提出了一个新的最大似然训练目标,用于训练神经点过程模型。该目标直接最大化完整事件序列的联合概率,而不是条件概率的链式乘积。这可以产生更加全面和一致的事件序列。
  3. 应用拉普拉斯近似和变分推断来估计模型的边缘后验概率。这使模型可以并行地生成新的事件序列。
  4. 在多种真实数据集上进行评估,包括医疗事件数据和犯罪数据。实验表明,该模型可以有效地生成新的合理的事件序列,并具有更好的预测性能。

主要的创新点在于提出了一个端到端的神经网络框架,可以直接对事件序列建模,学习时空动态和依赖关系,并最大化事件序列的联合概率。相比于传统的条件随机场和具有马尔科夫性质的模型,该模型可以学习更加复杂的时空联系,并生成更加全面且一致的新事件序列。

论文的主要贡献在于:

  1. 提出一个新的神经点过程模型,可以直接对事件序列建模
  2. 使用最大似然训练目标并利用拉普拉斯近似,可以有效地生成新事件序列
  3. 在多个真实数据集上证明该模型的有效性和预测性能

总的来说,这是一篇提出创新性点过程建模方案与训练目标的论文,获得了很好的效果,为时空事件动态学习提供了一个很好的思路和框架。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Miss.wei

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值