torch.triu

torch.triu()是PyTorch中的一个函数,用于获取矩阵的上三角或下三角部分。它可以用于矩阵的遮挡、对称矩阵的矢量化以及特定的矩阵操作,如只对上三角元素进行加法。通过对diagonal参数的设置,可以控制选取对角线以上或以下的元素。
摘要由CSDN通过智能技术生成

torch.triu()

作用:用于获取矩阵的上三角部分。
其定义为:

torch.triu(input, diagonal=0) 
- input: 输入矩阵
- diagonal: 对角线之上为真值。0代表主对角线,正数表示对角线之上为真值,负数表示对角线之下为真值。

例如,如果你有一个矩阵:
取主对角线之上的元素。

tensor = [[1, 2, 3], 
          [4, 5, 6],
          [7, 8, 9]]
          
torch.triu(tensor)  
# tensor([[1, 2, 3],
#         [0, 5, 6],  
#         [0, 0, 9]])

取对角线之上的元素。

torch.triu(tensor, diagonal=1)  
# tensor([[0, 2, 3],  
#         [0, 0, 6],
#         [0, 0, 0]])

取对角线之下的元素。

torch.triu(tensor, diagonal=-1)
# tensor([[1, 0, 3],
#         [4, 5, 0], 
#         [7, 8, 9 ]])

这个函数在许多情况下很有用:

  1. Masking - 将矩阵的一部分元素屏蔽/遮挡,只保留上三角或下三角部分。
  2. 对称矩阵矢量化 - 将上三角矩阵元素展平到向量中。
  3. 矩阵操作 - 仅对矩阵的上三角或下三角部分执行某些操作。

例子:

# Masking
tensor = torch.ones(3, 3) 
torch.triu(tensor, diagonal=1)  # 遮挡除对角线外的其他元素

# 矢量化对称矩阵  
tensor = torch.tensor([[1, 2, 3],  
                       [2, 4, 5],  
                       [3, 5, 6]])
triu_idx = torch.triu_indices(3, 2)  # 获取上三角索引
triu_vec = tensor[triu_idx]  
# tensor([1, 2, 4, 5, 6])

# 矩阵操作
tensor = torch.ones(3, 3)
tensor[torch.triu_indices(3, 1)] += 2  # 仅对上三角部分元素加2
# tensor([[1., 2., 3.], 
#         [2., 2., 3.],
#         [3., 3., 2.]])

总之,torch.triu()是一个用于获取矩阵上三角或下三角部分的简单但非常有用的函数,可以用于遮挡、矢量化和矩阵操作等目的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Miss.wei

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值