VAE(variational autoencoder)

VAE是variational autoencoder的缩写,意为变分自动编码器。它是一种生成模型,通过学习潜在空间的分布来生成数据。

VAE的主要构成包含:

  1. 编码器(Encoder): 将输入映射到潜在空间(latent space)
  2. 解码器(Decoder): 将潜在空间映射回输入空间
  3. 变分推断网络(Variational inference network): 学习潜在空间的先验分布
  4. 损失函数(Loss function): 通常包含重构损失(reconstruction loss)和KL散度(KL divergence)

VAE的工作流程是:

  1. 输入传入编码器,得到潜在空间的表示z
  2. z和随机噪声epsilon一起输入到变分推断网络,得到后验分布的参数
  3. 从后验分布中采样,得到z_sample
  4. z_sample输入到解码器,重构出输入的重构x_recon
  5. 计算重构损失(x与x_recon间的损失)和KL散度(后验分布与先验分布的差异)
  6. 优化编码器、解码器和变分推断网络,以最小化损失函数

VAE的特点是:

  1. 可以生成新的数据,而不仅仅是重构输入
  2. latent space 的先验分布是可学习的, model 可以自动找到数据的潜在特征
  3. 更加强调 latent space 的分布,产生的样本更加可信
  4. 编码器输出的不再是确定的hiddem state,而是hiddem的分布
  5. KL散度的使用使得模型可以生成更加可信的样本

所以,总体来说,VAE是一种强大的生成模型,通过学习潜在空间的分布,它可以进行更加真实的数据生成。相比于AE,VAE可以生成新的假样本,而不仅仅是重构输入。这使其在许多领域都非常实用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Miss.wei

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值