Flink SQL 和 Table API入门教程(五)


前言

Flink Table 和 SQL内置了很多 SQL中支持的函数;如果有无法满足的需要,则可以实现用户自定义的函数( UDF)来解决。


提示:以下是本篇文章正文内容,下面案例可供参考

一、系统内置函数

Flink Table API 和 SQL为用户提供了一组用于数据转换的内置函数。 SQL中支持的很多函数, Table API和 SQL都已经做了实现,其它还在快速开发扩展中。以下是一些典型函数的举例,全部的内置函数,可以参考官网介绍。

⚫ 比较函数
SQL
value1 = value2
value1 > value2
Table API
ANY1 === ANY2
ANY1 > ANY2
⚫ 逻辑函数
SQL
boolean1 OR boolean2
boolean IS FALSE
NOT boolean
Table API
BOOLEAN1 || BOOLEAN2
BOOLEAN.isFalse
!BOOLEAN
⚫ 算术函数
SQL
numeric1 + numeric2
POWER(numeric1, numeric2)
Table API
NUMERIC1 + NUMERIC2
NUMERIC1.power(NUMERIC2)
⚫ 字符串函数
SQL
string1 || string2
UPPER(string)
CHAR_LENGTH(string)
Table API
STRING1 + STRING2
STRING.upperCase()
STRING.charLength()
⚫ 时间函数
SQL
DATE string
TIMESTAMP string
CURRENT_TIME
INTERVAL string range
Table API
STRING.toDate
STRING.toTimestamp
currentTime()
NUMERIC.days
NUMERIC.minutes
⚫ 聚合 函数
SQL
COUNT(*)
SUM([ ALL | DISTINCT ] expression)
RANK()
ROW_NUMBER()
Table API
FIELD.count
FIELD.sum0

二、UDF

用户定义函数User defined Functions UDF 是一个重要的特性,因为它们显著地扩展了查询 Query 的表达能力。 一些系统内置函数无法解决的需求,我们可以用 UDF来自定义实现。

1.注册用户自定义函数 UDF

在大多数情况下,用户定义的函数必须先注册,然后才能在查询中使用。不需要专门为Scala 的 Table API注册函数。
函数通过调用registerFunction()方法在 TableEnvironment中注册。当用户定义的函数被注册时,它被插入到 TableEnvironment的函数目录中,这样 Table API或 SQL解析器就可以识别并正确地解释 它。

2.标量函数(Scalar Functions)

用户定义的标量函数,可以 将 0、1或多个标量值 映射到新的标量值。为了定义标量函数,必须在org.apache.flink.table.functions中扩展基类 Scalar Function并实现(一个或多个)求值( evaluation eval)方法。 标量函数的行为由求值方法决定,求值 方法必须公开声明并命名为 eval(直接 def声明,没有 override 。求值方法的参数类型和返回类型 确定 了 标量函数的参数和返回类型。
在下面的代码中,我们定义自己的 HashCode函数,在 TableEnvironment中注册它,并
在 查询中调用它。

// 自定义一个标量函数
 class HashCode( factor: Int ) extends ScalarFunction {
 def eval( s: String ): Int = { 
 s.hashCode * factor 
 } 
 }

主函数中调用,计算sensor id的哈希值 (前面部分照抄,流环境、表环境、读取 source、建表)

def main(args: Array[String]): Unit = { 
val env = StreamExecutionEnvironment.getExecutionEnvironment 
env.setParallelism(1) 
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) 
val settings = EnvironmentSettings 
.newInstance() 
.useOldPlanner()
 .inStreamingMode()
  .build() 
  val tableEnv = StreamTableEnvironment.create( env, settings ) 
  // 定义好 DataStream 
  val inputStream: DataStream[String] = env.readTextFile("..\\sensor.txt") 
  val dataStream: DataStream[SensorReading] = inputStream 
  .map(data => { val dataArray = data.split(",") 
  SensorReading(dataArray(0), dataArray(1).toLong, dataArray(2).toDouble) 
  })
   .assignAscendingTimestamps(_.timestamp * 1000L) 
   // 将 DataStream转换为 Table,并指定时间字段
   val sensorTable = tableEnv.fromDataStream(dataStream, 'id, 'timestamp.rowtime, 'temperature) 
   // Table API中使用 
   val hashCode = new HashCode(10) 
   val resultTable = sensorTable .select( 'id, hashCode('id) ) 
   // SQL 中使用 
   tableEnv.createTemporaryView("sensor", sensorTable) tableEnv.registerFunction("hashCode", hashCode)
    val resultSqlTable = tableEnv.sqlQuery("select id, hashCode(id) from sensor")
     // 转换成流,打印输出 
     resultTable.toAppendStream[Row].print("table") resultSqlTable.toAppendStream[Row].print("sql") 
     env.execute()
      }

3.表函数(Table Functions)

与用户定义的标量函数类似,用户定义的表函数,可以将0、 1或多个标量值作为输 入
参数;与标量函数不同的是,它可以返回任意数量的行作为输出,而不是单个值。
为了定义一个表函数,必须扩展org.apache.flink.table.functions中的基类 TableFunction并实现(一个或多个)求值方法。表函数的行为由其求值方法决定 ,求值 方法必须 是 public的,并命名为 eval。求值方法的参数类型 ,决定 表函数的所有有效参数。

返回表的类型由TableFunction的泛型类型确定。 求值 方法使用 protected collect T)方法发出输出行。

在Table API中, Table函数 需要 与 .joinLateral或 .leftOuterJoinLateral一起使用。
joinLateral算子,会 将外部表中的每一行 ,与表 函数 TableFunction,算子 的 参数 是它
的表达式 )计算得到的 所有行连接起来。

而leftOuterJoinLateral算子,则是左外连接,它同样会将外部表中的每一行与表 函数 计
算生成的所有行连接起来;并且,对于 表函数返回 的是 空表的外部行 ,也要保留下来 。
在SQL中, 则 需要使用 Lateral Table((),或者带有 ON TRUE条件的左连接。
下面的代码中,我们将定义一个表函数,在表环境中注册它,并在查询中调用它。
自定义TableFunction

// 自定义TableFunction 
class Split(separator: String) extends TableFunction[(String, Int)]{ 
def eval(str: String): Unit = { 
str.split(separator).foreach( 
word => collect((word, word.length)) 
)
 }
  }

接下来,就是在代码中调用。首先是Table API的方式:

// Table API中调用,需要用joinLateral 
val resultTable = sensorTable 
.joinLateral(split('id) as ('word, 'length)) // as对输出行的字段重命名 
.select('id, 'word, 'length)
 // 或者用leftOuterJoinLateral 
 val resultTable2 = sensorTable 
 .leftOuterJoinLateral(split('id) as ('word, 'length))
  .select('id, 'word, 'length)
  // 转换成流打印输出 
  resultTable.toAppendStream[Row].print("1") 
  resultTable2.toAppendStream[Row].print("2")

然后是 SQL的方式:

tableEnv.createTemporaryView("sensor", sensorTable)
tableEnv.registerFunction("split", split) 
val resultSqlTable = tableEnv.sqlQuery( 
""" 
|select id, word, length 
|from 
|sensor, LATERAL TABLE(split(id)) AS newsensor(word, length) 
""".stripMargin) 
// 或者用左连接的方式
 val resultSqlTable2 = tableEnv.sqlQuery( 
 """ 
 |SELECT id, word, length 
 |FROM 
 |sensor
| LEFT JOIN
| LATERAL TABLE(split(id)) AS newsensor(word, length)
| ON TRUE 
""".stripMargin 
) // 转换成流打印输出
resultSqlTable.toAppendStream[Row].print("1")
resultSqlTable2.toAppendStream[Row].print("2")

4.聚合函数(Aggregate Functions)

用户自定义聚合函数(User Defined Aggregate Functions UDAGGs)可以把一个表中的数据,聚合成一个标量值。 用户定义的聚合函数,是通过继承 AggregateFunction抽象 类实现的。

聚合的示例
上图中显示了一个聚合的 例子 。
假设现在有一张表,包含了各种饮料的数据。该表由三列(id、 name和 price)、五行组成数据。现在我们需要找到表中所有饮料的最高价格,即执行 max()聚合 结果将是一个数值。
AggregateFunction的工作原理如下。
⚫ 首先,它需要一个累加器,用 来 保存聚合中间结果的数据结构 (状态 。可以 通过调用AggregateFunction的 createAccumulator()方法创建空累加器。
⚫ 随后,对每个输入行调用函数的 accumulate()方法来更新累加器。
⚫ 处理完所有行后,将调用函数的 getValue()方法来计算并返回最终结果。
AggregationFunction要求必须实现的方法:
⚫ createAccumulator()
⚫ accumulate()
⚫ getValue()
除了上述方法之外,还有一些可选择实现的方法。其中一些方法,可以让系统执行查询更有效率,而另一些方法,对于某些场景是必需的。例如,如果聚合函数应用在会话窗口(session group window)的上下文中,则 merge()方法是必需的。
⚫ retract()
⚫ merge()
⚫ resetAccumulator()
接下来我们写一个 自定义 AggregateFunction 计算一下每个 sensor的平均温度值。

// 定义AggregateFunction的Accumulator 
class AvgTempAcc { 
var sum: Double = 0.0 
var count: Int = 0 } 
class AvgTemp extends AggregateFunction[Double, AvgTempAcc] {
 override def getValue(accumulator: AvgTempAcc): Double = 
 accumulator.sum / accumulator.count 
override def createAccumulator(): AvgTempAcc = new AvgTempAcc 
def accumulate(accumulator: AvgTempAcc, temp: Double): Unit ={ 
accumulator.sum += temp 
accumulator.count += 1 
} 
}

接下来就可以在代码中调用了。

// 创建一个聚合函数实例 
val avgTemp = new AvgTemp() 
// Table API的调用 
val resultTable = sensorTable.groupBy('id) 
.aggregate(avgTemp('temperature) as 'avgTemp) 
.select('id, 'avgTemp) 
// SQL的实现 
tableEnv.createTemporaryView("sensor", sensorTable) 
tableEnv.registerFunction("avgTemp", avgTemp) 
val resultSqlTable = tableEnv.sqlQuery( 
""" 
|SELECT 
|id, avgTemp(temperature) 
|FROM 
|sensor 
|GROUP BY id 
""".stripMargin) 
// 转换成流打印输出 
resultTable.toRetractStream[(String, Double)].print("agg temp") resultSqlTable.toRetractStream[Row].print("agg temp sql")

5.表聚合函数(Table Aggregate Functions)

用户定义的表聚合函数(User Defined Table Aggregate Functions UDTAGGs)),可以把一个 表 中数据, 聚合为具有多行和多列的结果表。 这跟 AggregateFunction非常类似,只是之前聚合结果是一个标量值,现在变成了一张表。

表聚合示例
比如现在我们需要找到表中所有饮料的前2个最高价格 ,即执行 top2()表聚合。我们 需要检查 5行中的每一行, 得到的结果将是一个具有 排序后前 2个值的表。用户定义的表聚合函数,是通过 继承 TableAggregateFunction抽象 类 来 实现的。
TableAggregateFunction的工作原理如下。
⚫ 首先,它 同样 需要一个累加器 Accumulator,它是保存聚合中间结果的数据结构。
通过调用 TableAggregateFunction的 createAccumulator()方法 可以 创建空累加器。
⚫ 随后,对每个输入行调用函数的 accumulate()方法来更新累加器。
⚫ 处理完所有行后,将调用函数的 emitValue()方法来计算并返回最终结果。
AggregationFunction要求必须实现的方法:
⚫ createAccumulator()
⚫ accumulate()
除了上述方法之外,还有一些可选择实现的方法。
⚫ retract()
⚫ merge()
⚫ resetAccumulator()
⚫ emitValue()
⚫ emitUpdateWithRetract()
接下来我们写一个自定义 TableAggregateFunction 用来 提取每个 sensor最高的两个温度值。

// 先定义一个 
Accumulator class Top2TempAcc{ 
var highestTemp: Double = Int.MinValue 
var secondHighestTemp: Double = Int.MinValue } 
// 自定义 TableAggregateFunction 
class Top2Temp extends TableAggregateFunction[(Double, Int), Top2TempAcc]{ 
override def createAccumulator(): Top2TempAcc = new Top2TempAcc 
def accumulate(acc: Top2TempAcc, temp: Double): Unit ={ 
if( temp > acc.highestTemp ){ 
acc.secondHighestTemp = acc.highestTemp 
acc.highestTemp = temp
 } else if( temp > acc.secondHighestTemp ){ 
 acc.secondHighestTemp = temp } } 
 def emitValue(acc: Top2TempAcc, out: Collector[(Double, Int)]): Unit ={         out.collect(acc.highestTemp, 1) 
out.collect(acc.secondHighestTemp, 2)
}
}

接下来就可以在代码中调用了。

// 创建一个表聚合函数实例 
val top2Temp = new Top2Temp() 
// Table API的调用 
val resultTable = sensorTable.groupBy('id) 
.flatAggregate( top2Temp('temperature) as ('temp, 'rank) ) 
.select('id, 'temp, 'rank) 
// 转换成流打印输出 
resultTable.toRetractStream[(String, Double, Int)].print("agg temp") resultSqlTable.toRetractStream[Row].print("agg temp sql")

总结

函数是flink当中最灵活的用法,可以自定义处理问题,也算是flink的高阶用法了。

### 回答1: Flink 1.14的Table APISQL教程可以在Flink官方文档中找到,其中包括了Table APISQL的基础概念、语法、操作符、函数等内容,还有详细的示例代码和实战案例,非常适合初学者学习和入门。另外,Flink社区也有很多优秀的博客和视频教程,可以帮助大家更深入地理解和应用Table APISQL。 ### 回答2: Flink是一个分布式计算引擎,是Apache Hadoop生态圈中用于处理流式数据的一种解决方案。Flink支持表格APISQL语言,使得用户可以更加简单地实现流处理任务。而在Flink 1.14中,TableAPISQL引擎则得到了进一步的增强。 TableAPISQL将无需掌握Java或Scala编程语言就可以操作表格数据。TableAPI API支持Java和Scala,SQL则支持标准的SQL语言。如果你熟悉SQL语言,那么你很容易上手使用TableAPISQL引擎。 Flink TableAPISQL支持各种类型的表格操作,包括选择、过滤、分组、排序、连接等。此外,它们还支持窗口和聚合操作。这使得用户在处理流式数据时可以更加简单易懂地进行复杂的操作。 在Flink 1.14中,TableAPISQL引擎还提供了一系列新功能,包括: 1. 时间特征支持——TableAPISQL中的数据时间戳可以通过时间特征进行定义和控制。通过时间特征,用户可以定义数据的时间属性,例如事件时间或处理时间。 2. 详细的窗口管理——当窗口中的数据到期时,Flink 1.14会自动清除过期数据,避免数据量过大导致性能下降。 3. 支持更多的流数据源——在Flink 1.14中,TableAPISQL引擎可以直接从Kafka、Kinesis、Hive等数据源中读取数据。这可以让用户更加方便地读取数据,而无需编写额外的代码。 TableAPISQL引擎对于Flink用户来说是非常重要的工具,无需掌握Java或Scala编程语言即可操作表格数据。并且在Flink 1.14中,这两个工具得到了进一步的增强,包括更好的窗口管理和更多的数据源支持。因此,学习TableAPISQL引擎对于想要使用Flink进行流处理的人来说是非常有益的。 ### 回答3: Flink 1.14 TableAPISQL是一个非常好用的数据处理工具,可帮助数据分析师快速进行数据查询、聚合和处理。下面详细介绍一下Flink 1.14的TableAPISQL教程。 1. 如何配置Flink 1.14的TableAPISQL环境? 在进行Flink 1.14的TableAPISQL开发之前,需要先进行环境的配置。可以在官网下载Flink的安装包,解压后找到/bin目录下的start-cluster.sh脚本进行启动。启动之后,即可通过WebUI的页面查看Flink的运行状态。 2. TableAPI的基本操作 TableAPIFlink的一个高层次数据处理API,可以通过编写代码来进行数据的处理。TableAPI的基本操作有以下几个: (1) 创建Table,可以使用StreamTableEnvironment的fromDataStream或fromTableSource方法,将DataStream或TableSource转换成Table。 (2) Table的转换,可以使用多种转换操作,包括filter、select、orderBy、groupBy、join等。 (3) 将Table转化为DataStream,可以使用StreamTableEnvironment的toDataStream方法。 3. SQL的基本操作 SQLFlink提供的一种快速数据处理方式,用户只需要编写SQL语句即可完成数据处理。SQL的基本操作有以下几个: (1) 注册Table,可以使用StreamTableEnvironment的registerTable或registerTableSource方法,将TableTableSource注册到环境中。 (2) 执行SQL,可以使用StreamTableEnvironment的executeSql方法,执行SQL语句并返回结果。 (3) 将结果转换为DataStream,可以使用StreamTableEnvironment的toDataStream方法。 4. 如何优化Flink 1.14的TableAPISQL的执行效率? 在进行TableAPISQL开发时,为了保证其执行效率,需要注意以下几点: (1) 避免使用复杂的JOIN操作,可以使用Broadcast和TableFunction等方式来避免JOIN操作。 (2) 注意Table的Schema定义,Schema的设计合理与否直接影响SQL性能。 (3) 避免使用无限制的聚合操作,可以进行分批次聚合来避免。 总的来说,Flink 1.14的TableAPISQL是非常强大的数据处理工具,能够帮助开发者快速高效的进行数据处理。上述内容是入门级别的教程,如果想要更深入的了解,可以参考官方文档进行学习。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值