【tensorflow】结果可复现设置-随机种子设置(Random Seed)

本文介绍如何在深度学习实验中固定随机种子以确保结果的可复现性。通过设置Python、NumPy及TensorFlow的随机种子,并利用tensorflow-determinism库确保GPU环境下结果的一致性。
摘要由CSDN通过智能技术生成

文章目录

引言

在进行深度学习实验的时候,可能经常会发现,虽然输入的数据都是一样的,但是输出的结果总是会有不同的波动,这主要是由于在神经网络中,很多网络层参数的初始化会涉及到随机,这个就会导致最终的结果会有一些差距,因此如果我们想要固定某一个结果,并复现这个结果,我们就需要提前设置固定的随机种子

设置

一般来说,我们可以通过对每一层的网络层设置固定的随机种子,保持结果可复现,但是显然这是比较麻烦的一件事,所以我们可以通过 tf.random.set_seed() 来全局固定CPU上的随机性,但是当我们使用GPU训练时,则无法起作用,需要通过 tensorflow-determinism库来实现在GPU上固定随机性


# pip install tensorflow-determinism
# tensorflow-determinism = 0.3.0
# tensorflow = 2.9.1

import random
import numpy as np
import tensorflow as tf 

random_seed = 42 
random.seed(random_seed )  # set random seed for python
np.random.seed(random_seed )  # set random seed for numpy
tf.random.set_seed(random_seed )  # set random seed for tensorflow-cpu
os.environ['TF_DETERMINISTIC_OPS'] = '1' # set random seed for tensorflow-gpu

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值