PyTorch/Tensorflow设置随机种子 ,保证结果复现

本文介绍如何在PyTorch与TensorFlow中设置随机种子以确保实验结果的可重复性。对于PyTorch, 通过设置random、numpy、torch等库的随机种子实现。对于TensorFlow, 除了设置基本随机种子外还需调用确定性功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pytorch随机种子设置

import numpy as np
import random
import os
import torch
def seed_torch(seed=2021):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.enabled = False
seed_torch()

Tensorflow设置随机种子

  • 第一步 仅导入设置种子和初始化种子值所需的那些库
import tensorflow as tf
import os
import numpy as np
import random

SEED = 0
  • 第二步 为所有可能具有随机行为的库初始化种子的函数
def set_seeds(seed=SEED):
    os.environ['PYTHONHASHSEED'] = str(seed)
    random.seed(seed)
    tf.random.set_seed(seed)
    np.random.seed(seed)
  • 第三步 激活 Tensorflow 确定性功能
def set_global_determinism(seed=SEED):
    set_seeds(seed=seed)

    os.environ['TF_DETERMINISTIC_OPS'] = '1'
    os.environ['TF_CUDNN_DETERMINISTIC'] = '1'
    
    tf.config.threading.set_inter_op_parallelism_threads(1)
    tf.config.threading.set_intra_op_parallelism_threads(1)

# Call the above function with seed value
set_global_determinism(seed=SEED)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值