机器学习实战代码方法总结

机器学习实战

学习过程中有关代码的每个方法的记录(随后添加解释,包括实现、输入、输出等)。

k近邻算法

# kNN.py
def createDataSet()
def classify0(inX,dataSet,labels,k)
def file2matrix(filename)
def autoNorm(dataSet)
def datingClassTest()
def classifyPerson()
def img2vector(filename)
def handwritingClassTest()

决策树

# trees.py
def calcShannonEnt(dataSet)
def createDataSet()
def splitDataSet(dataSet, axis, value)
def chooseBestFeatureToSplit(dataSet)
def majorityCnt(classList)
def createTree(dataSet, labels)
def classify(inputTree, featLabels, testVec)
def storeTree(inputTree, fileName)
def grabTree(fileName)

绘制决策树

# treePlotter.py
def plotNode(nodeTxt, centerPt, parentPt, nodeType)
def plotMidText(cntPt, parentPt, txtSting)
def plotTree(myTree, parentPt, nodeTxt)
def createPlot(inTree)
def getNumLeafs(myTree)
def getTreeDepth(myTree)
def retrieveTree(i)

朴素贝叶斯分类

def loadDataSet()
def createVocabList(dataSet)
def setofWords2Vec(vocabList, inputSet)
def bagOfWords2VecMN(vocabList, inputSet)
def trainNB(trainMatrix, trainCategory)
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1)
def testingNB()
def textParse(bigString)
def spamTest()

Logistic回归

def loadDataSet()
def sigmoid(inX)
def gradAscent(dataMatIn, classLabels)
def stocGradAscent0(dataMatrix, classLabels)
def stocGradAscent1(dataMatrix, classLabels, numIter=150)
def plotBestFit(weights)
def classifyVector(inX, weights)
def colicTest()
def multiTest()

SVM

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值