如何防止过拟合?二分类转换到多分类的方法?梯度消失/爆炸

转载 2018年04月17日 18:12:51
  1. 数据增强:让模型看见尽可能多的例外情况。方法:从源头获取更多数据,对图像进行平移,翻转,缩放,亮度变化等
  2. 使用简单的模型:减少网络的层数,神经元个数,等。
  3. 提前结束训练。当时间较短时,网络权直较小,激活函数工作在线性区,当训练时间越长,部分权直越大。
  4. 正则化限制权直:L1,L2
  5. 增加噪声:在输入中加噪声,噪声会按照权直的平方放大。在权值上加噪声:0均值高斯分布初始化权直。对网络的响应加噪声:输出随机:导致训练更慢,但是效果好。
  6. 结合多种模型,求平均值:bagging:用不同的模型拟合不同的训练集,以随机森林为例,训练了一堆不关连的决策树,较慢,因为神经网络复杂。 boosting:训练简单的神经网络,加权平均输出 ; dropout
  7. 贝叶斯方法
  8. bn 不但能加快训练速度,还能防止过拟合
  9. PCA(Principal componet analysis)分析feature importance,减少features的数量
  10. 隐藏层输出用于预测
  11. 以上原因见https://zhuanlan.zhihu.com/p/30951658
  12. 参考https://www.zhihu.com/question/59201590
    8.这里写图片描述

SVM如何避免过拟合

过拟合(Overfitting)表现为在训练数据上模型的预测很准,在未知数据上预测很差。过拟合主要是因为训练数据中的异常点,这些点严重偏离正常位置。我们知道,决定SVM最优分类超平面的恰恰是那些占少数...
  • vincent2610
  • vincent2610
  • 2016-07-26 10:48:07
  • 7039

机器学习中防止过拟合的处理方法

在进行数据挖掘或者机器学习模型建立的时候,因为在统计学习中,假设数据满足独立同分布,即当前已产生的数据可以对未来的数据进行推测与模拟,因此都是使用历史数据建立模型,即使用已经产生的数据去训练,然后使用...
  • heyongluoyao8
  • heyongluoyao8
  • 2015-10-26 20:58:12
  • 84788

SVM防止过拟合

过拟合(Overfitting)表现为在训练数据上模型的预测很准,在未知数据上预测很差。过拟合主要是因为训练数据中的异常点,这些点严重偏离正常位置。我们知道,决定SVM最优分类超平面的恰恰是那些占少数...
  • u010398562
  • u010398562
  • 2017-08-28 22:27:37
  • 858

防止过拟合以及解决过拟合

本文转载:http://blog.sina.com.cn/s/blog_53c47a2f0102vjyf.html                     过拟合:为了得到一致假设而使假设变得过度...
  • jiandanjinxin
  • jiandanjinxin
  • 2016-07-07 09:30:16
  • 826

为什么会产生过拟合,有哪些方法可以预防或克服过拟合

为什么会产生过拟合,有哪些方法可以预防或克服过拟合? 什么是过拟合: 所谓过拟合(Overfit),是这样一种现象:一个假设在训练数据上能够获得比其他假设更好的拟合,但是在训练数据外的数据集上却不...
  • keepreder
  • keepreder
  • 2015-08-04 17:46:09
  • 2629

[读书笔记] 《Python 机器学习》- 过拟合的几种解决方法

机器学习时,经常会出现过拟合的问题,本文介绍了几种解决方法
  • LeYOUNGER
  • LeYOUNGER
  • 2017-07-19 15:15:45
  • 1226

怎么解决过拟合与欠拟合

一.过拟合在训练数据不够多时,或者over-training时,经常会导致over-fitting(过拟合)。其直观的表现如下图所所示。随着训练过程的进行,模型复杂度,在training data上的...
  • u010899985
  • u010899985
  • 2018-03-07 22:31:21
  • 149

如何防止过拟合?二分类转换到多分类的方法?梯度消失/爆炸

数据增强:让模型看见尽可能多的例外情况。方法:从源头获取更多数据,对图像进行平移,翻转,缩放,亮度变化等 使用简单的模型:减少网络的层数,神经元个数,等。 提前结束训练。当时间较短时,网络权直较小,...
  • qq_39466616
  • qq_39466616
  • 2018-04-17 18:12:51
  • 7

过拟合的原因+处理方法

过拟合的原因 1. 我们得到的模型g 太复杂。f很小,g 太大,会过拟合 2. 原本的模型(目标函数) f 太复杂 。g达不到f的形式,也会产生过拟合。模型f太复杂,其实也是一种噪声。 3...
  • MosBest
  • MosBest
  • 2016-08-11 23:26:45
  • 7174

神经网络如何防止过拟合(总结)

如何防止神经网络过拟合 获取更多的数据 选择正确的模型 将多个模型平均 贝叶斯方法 如何选择正确的模型正则项 L1 L2 early stoping 输入加噪声 权重加噪声 dropout L1:会将...
  • u012436149
  • u012436149
  • 2017-04-09 21:12:18
  • 1440
收藏助手
不良信息举报
您举报文章:如何防止过拟合?二分类转换到多分类的方法?梯度消失/爆炸
举报原因:
原因补充:

(最多只允许输入30个字)