题目描述
完全数(Perfect number),又称完美数或完备数,是一些特殊的自然数。
它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。
例如:28,它有约数1、2、4、7、14、28,除去它本身28外,其余5个数相加,1+2+4+7+14=28。
给定函数count(int n),用于计算n以内(含n)完全数的个数。计算范围, 0 < n <= 500000
返回n以内完全数的个数。 异常情况返回-1
/**
*
* 完全数(Perfect number),又称完美数或完备数,是一些特殊的自然数。
* 它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。
* 例如:28,它有约数1、2、4、7、14、28,除去它本身28外,其余5个数相加,1+2+4+7+14=28。
*
* 给定函数count(int n),用于计算n以内(含n)完全数的个数
* @param n 计算范围, 0 < n <= 500000
* @return n 以内完全数的个数, 异常情况返回-1
*
*/
public static int count( int n)
输入描述:
输入一个数字
输出描述:
输出完全数的个数
示例1
输入
1000
输出
3
解决方案
/*
约数计算可以遍历sqrt(n)的范围
*/
#include<iostream>
#include<algorithm>
using namespace std;
int count(int num)
{
int cnt = 0;
if(num < 0 | num> 500000)
return -1;
else{
for(int i=2;i<=num;++i)
{
int sum = 0;
//遍历范围
int sq = sqrt(i);
for(int j=2;j<=sq;++j)
{
if(i%j == 0){
//如果j^2 = i,说明两个约数相同,只加一个
if(i/j==j)
sum +=j;
else
//否则,两个不同的约数都要相加
sum += j+(i/j);
}
}
if(sum +1 == i)
cnt++;
}
return cnt;
}
}
int main()
{
int num = 0;
while(cin>>num)
cout<<count(num)<<endl;
return 0;
}