leetcode 53. 最大子数组和(简单dp)


作者简介:C/C++ 、Golang 领域耕耘者,创作者
个人主页:作者主页
题目来源: leetcode官网
如果感觉博主的文章还不错的话,还请关注➕ 、点赞👍 、收藏🧡三连支持一下博主哦~~~

💜 题目描述

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

🧡 算法分析

此题方法是用dp

算法步骤:

  1. 设 f(i)表示以第 i 个数字为结尾的最大连续子序列的 总和 是多少。
  2. 初始化 f(0)=nums[0]
  3. 转移方程 f(i)=max(f(i−1)+nums[i],nums[i])。可以理解为当前有两种决策,一种是将第 i 个数字和前边的数字拼接起来;另一种是第 i 个数字单独作为一个新的子序列的开始。
  4. 最终答案为 ans=max(f(k)) 0 <= k <= n

优化:
其实可以将上面额外开辟的数组空间优化成一个常量记录下来,然后用常量迭代更新答案即可。见第二个代码。

💚 代码实现

用额外数据空间记录,空间复杂度为 O(n)。

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        
        int n = nums.size();
        vector<int> f(n);
        f[0] = nums[0];
        int re = f[0];

        for(int i = 1; i < n; i ++)
        {
            f[i] = max(nums[i], nums[i] + f[i - 1]);
            re = max(re, f[i]);
        }

        return re;
    }
};

用常量记录信息,空间复杂度为 O(1)。

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int re = INT_MIN;
        for(int i = 0, last  = 0; i < nums.size(); i ++)
        {
            // last = max(nums[i], nums[i] + last);
            last = nums[i] + max(0, last);
            re = max(re, last);
        }

        return re;
    }
};

执行结果:

在这里插入图片描述

💙 时间复杂度分析

其中遍历一次, 时间复杂度为O(n)。
没有用额外的数组,空间复杂度为O(1)。

如果觉得对你有帮助的话:
👍 点赞,你的认可是我创作的动力!
🧡 收藏,你的青睐是我努力的方向!
✏️ 评论,你的意见是我进步的财富!

推荐一个零声学院免费公开课程,个人觉得老师讲得不错,分享给大家:Linux,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK等技术内容,立即学习

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值