作者简介:C/C++ 、Golang 领域耕耘者,创作者
个人主页:作者主页
题目来源: leetcode官网
如果感觉博主的文章还不错的话,还请关注➕ 、点赞👍 、收藏🧡三连支持一下博主哦~~~
💜 题目描述
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组 是数组中的一个连续部分。
示例1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例2:
输入:nums = [1]
输出:1
示例 3:
输入:nums = [5,4,-1,7,8]
输出:23
🧡 算法分析
此题方法是用dp
算法步骤:
- 设 f(i)表示以第 i 个数字为结尾的最大连续子序列的 总和 是多少。
- 初始化
f(0)=nums[0]
。 - 转移方程
f(i)=max(f(i−1)+nums[i],nums[i])
。可以理解为当前有两种决策,一种是将第 i 个数字和前边的数字拼接起来;另一种是第 i 个数字单独作为一个新的子序列的开始。 - 最终答案为
ans=max(f(k))
0 <= k <= n
优化:
其实可以将上面额外开辟的数组空间优化成一个常量记录下来,然后用常量迭代更新答案即可。见第二个代码。
💚 代码实现
用额外数据空间记录,空间复杂度为 O(n)。
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int n = nums.size();
vector<int> f(n);
f[0] = nums[0];
int re = f[0];
for(int i = 1; i < n; i ++)
{
f[i] = max(nums[i], nums[i] + f[i - 1]);
re = max(re, f[i]);
}
return re;
}
};
用常量记录信息,空间复杂度为 O(1)。
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int re = INT_MIN;
for(int i = 0, last = 0; i < nums.size(); i ++)
{
// last = max(nums[i], nums[i] + last);
last = nums[i] + max(0, last);
re = max(re, last);
}
return re;
}
};
执行结果:
💙 时间复杂度分析
其中遍历一次, 时间复杂度为O(n)。
没有用额外的数组,空间复杂度为O(1)。
如果觉得对你有帮助的话:
👍 点赞,你的认可是我创作的动力!
🧡 收藏,你的青睐是我努力的方向!
✏️ 评论,你的意见是我进步的财富!
推荐一个零声学院免费公开课程,个人觉得老师讲得不错,分享给大家:Linux,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK等技术内容,立即学习