机器学习 (四) 逻辑回归(计算图表示)

逻辑回归

给定输入 x x x,使得假设函数在 0 ≤ h θ ( x ) ≤ 1 0 \leq h_\theta(x) \leq 1 0hθ(x)1分布,
h θ ( x ) = g ( z ) h_\theta(x)=g(z) hθ(x)=g(z)

为了使预测值在 [ 0 , 1 ] [0,1] [0,1]分布,选择sigmoid函数:
g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+ez1
在这里插入图片描述

Loss Function 损失函数

L ( h θ ( x ) , y ) = − y l o g ( h θ ( x ) ) − ( 1 − y ) l o g ( 1 − h θ ( x ) ) L(h_\theta(x),y)=-ylog(h_\theta(x))-(1-y)log(1-h_\theta(x)) L(hθ(x),y)=ylog(hθ(x))(1y)log(1hθ(x))
If y=1, L ( h θ ( x ) , y ) = − l o g ( h θ ( x ) ) L(h_\theta(x),y)=-log(h_\theta(x)) L(hθ(x),y)=log(hθ(x)), 想要 h θ ( x ) h_\theta(x) hθ(x)更大且 l o g ( h θ ( x ) ) log(h_\theta(x)) log(hθ(x))更大,使得 − l o g ( h θ ( x ) ) -log(h_\theta(x)) log(hθ(x))更小,即损失(误差)最小;
if y=0, L ( h θ ( x ) , y ) = − l o g ( 1 − h θ ( x ) ) L(h_\theta(x),y)=-log(1-h_\theta(x)) L(hθ(x),y)=log(1hθ(x)),想要 h θ ( x ) h_\theta(x) hθ(x)更小且 l o g ( h θ ( x ) ) log(h_\theta(x)) log(hθ(x))更大,使得 − l o g ( 1 − h θ ( x ) ) -log(1-h_\theta(x)) log(1hθ(x))更小,即损失(误差)最小

Cost Function 成本函数

J ( w , b ) = 1 m ∑ i = 1 m L ( h θ ( x ( i ) ) , y ( i ) ) = − 1 m ∑ i = 1 m y ( i ) l o g ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) l o g ( 1 − h θ ( x ( i ) ) ) J(w, b)=\frac{1}{m}\sum_{i=1}^{m}L(h_\theta(x^{(i)}),y^{(i)})=-\frac{1}{m}\sum_{i=1}^{m}y^{(i)}log(h_\theta(x^{(i)}))+(1-y^{(i)})log(1-h_\theta(x^{(i)})) J(w,b)=m1i=1mL(hθ(x(i)),y(i))=m1i=1my(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))
其中w为传递的权重参数,b为参数,x为输入,y为真实值(training data), h θ ( x ) h_\theta(x) hθ(x)为输出,预测值。

Gradient Descent 梯度下降

在这里插入图片描述x为输入数据,w为权重参数,b为参数,然后从左至右依次通过公式z, a, L计算损失(误差)函数,目标:使损失(误差)函数最小。其中公式z为数据x与参数d的表示函数,公式a为激活函数,此处选择了sigmoid函数,最后公式L为损失函数。

然后从右至左依次计算公式L, a, z, w/b的导数即反向传播的过程,使bp神经网络的基础,从右至左依次求导得出各权重的导数,以求得使误差最小的权重参数w和b。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值