机器学习 (五) 多分类问题(KNN & softmax)

本文探讨了机器学习中处理多分类问题的两种常见方法:K-Nearest Neighbour (KNN) 和 softmax。KNN算法通过寻找与新实例最接近的K个邻居来决定分类,而softmax作为激活函数,基于概率预测分类。此外,还提到了其他如SVM和神经网络的多分类策略。
摘要由CSDN通过智能技术生成

机器学习多分类问题

机器学习中大部分方法主要解决二分类问题,例如逻辑回归,SVM,决策树等,这些算法当然也可处理多分类问题,但是需要修改处理。

机器学习中处理多分类问题最简单常用的是K近邻(K-Nearest Neighbour)softmax

K-Nearest Neighbour

k近邻算法是一种基本分类回归方法。

K-NN algorithm,是给定一个数据集,当有新的输入实例时,计算该输入实例与给定数据集所有实例的距离(欧氏距离)。然后在给定数据集中找到与该输入实例距离最短的K个实例,这K个实例的多数属于某个类,就把该输入实例分类到这个类中。(类似于少数服从多数的思想)

K-NN算法实现思路如下:

  1. 数据归一化 (很重要);
  2. 划分测试集训练集;
  3. 给测试集训练集设置标签(1,2,3,4,5…),代表分类;
  4. 选择k值;
  5. 遍历测试集,计算每个测试实例与所有训练实例的欧式距离(Euclidean Distance),并记录所有距离到数组;
  6. 对每个测试实例,排序其与所有训练实例的距离,选出最近的k个训练实例与其对应标签;
  7. 计算此k个训练实例最多属于哪一类,即哪个分类标签数量最多;
  8. 将该测试实例分类维该类数据;
  9. 计算分类准确率。

K-NN算法对应Matlab代码:<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值