列空间和零空间

本文讨论了矩阵的列空间和行空间概念,强调了列空间由矩阵的列构成,行空间由矩阵的行构成,以及零空间的性质。矩阵秩影响空间维度,非满秩矩阵的行空间是r维子空间,剩余为零空间。行空间和零空间虽非互补,但其基向量组合形成完整n维空间。
摘要由CSDN通过智能技术生成

矩阵列向量作为基向量组成的空间叫列空间

两个子空间的并集不一定是一个空间,但是他们的交集一定还是一个空间,虽然这个空间可能只有0
A中几个线性无关的列叫主列(pivot column)

这可以从一些新的角度理解矩阵运算

  • A x Ax Ax 是 矩阵A的列空间中坐标 x x x在原始空间中的值,也可以说是把 x x x从列空间转换到标准欧式空间空间中
  • A = B C A=BC A=BC是 矩阵B线性组合得到A的每一列,第 i i i列 线性组合的系数恰好是C的第 i i i列向量,
    因此最终的A列向量和B的列向量等长,简单地说就是他们行数相同,
    并且矩阵A列数目等同于C的列数目,也就是说他们的列数相同
  • A = B Δ A=B \Delta A=BΔ 是对B按列缩放, Δ \Delta Δ是对角矩阵

类似的,矩阵也有行空间。
A = B C A=BC A=BC转置可以从列空间的角度理解行空间

  • A = B C A=BC A=BC 表示 矩阵A的行向量,是C的行空间的线性组合,其中系数就是B的行向量
  • A = Δ C A=\Delta C A=ΔC 是对C按行放大,对角元素的值

零空间是 Ax=0所有解的组合

  • 零空间和行空间在正交,在几何上互相垂直
  • 零空间的真实维度是n-r,r是矩阵的秩,n是列数

A x 1 = 0 ; A x 2 Ax_1=0 ;Ax_2 Ax1=0;Ax2=0,那么 A ( x 1 + x 2 ) = 0 A(x_1+x_2)=0 Ax1+x2=0 这说明零空间是封闭的
Ax=0,可以知道x与A的任意行向量正交,所以他们是正交的

我们知道如果矩阵不是满秩的,那么行向量长度为n,但是它组成的子空间不能铺满整个n维欧式空间。
矩阵秩为r,其实就是有r个独立的行向量,它们就是行空间的有效基向量,其他基向量可以被他们线性组合得出,所以是无效的,所以我们可以认为行空间本质上是r维子空间。

完整的n维空间有r个维度已经被行空间所表达,那么剩下的n-r的维度就是零空间所能表达的子空间。他们各自分别能拿出r个独立的基向量和n-r个独立的基向量,这些组合起来就是完整的n维空间,不过需要注意的是行空间和零空间的并集并不是完整的n维空间,这两个空间的正交而不是互补的,不过他们的基向量互补可以组成完成的n维空间

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值