令K是一个锥.集合
K
∗
=
{
y
∣
x
T
y
≥
0
,
∀
x
∈
K
}
K^*=\{y|x^Ty\ge0,\forall x\in K\}
K∗={y∣xTy≥0,∀x∈K}是K的对偶锥
它是锥并且是凸的,即便K不凸
从几何上看 y ∈ K ∗ y\in K^* y∈K∗当且仅当-y是K在原点的一个支撑超平面的法线
对偶锥满足的性质:
K
∗
K^*
K∗是闭凸锥
K
1
⊆
K
2
K_1\subseteq K_2
K1⊆K2可导出
K
1
∗
⊆
K
2
∗
K_1^*\subseteq K_2^*
K1∗⊆K2∗
如果
K
有非空内部
,
那么
K
∗
是尖的
如果K有非空内部,那么K*是尖的
如果K有非空内部,那么K∗是尖的
如果
K
的闭包是尖的
,
那么
K
∗
有非空内部
如果K的闭包是尖的,那么K^*有非空内部
如果K的闭包是尖的,那么K∗有非空内部
K
∗
∗
是
K
的凸包的闭包
.
(
因此如果
K
是凸和闭的
,
那么它对偶的对偶就是自身
)
K^{**}是K的凸包的闭包.(因此如果K是凸和闭的,那么它对偶的对偶就是自身)
K∗∗是K的凸包的闭包.(因此如果K是凸和闭的,那么它对偶的对偶就是自身)
锥定义的广义不等式的对偶不等式就锥的对偶锥定义的广义不等式
广义不等式及其对偶有一些重要性质
x
≤
K
y
当且仅当对于任意
λ
≥
K
∗
0
有
λ
T
x
≤
λ
T
y
x\le_Ky当且仅当对于任意\lambda\ge_{K*}0有\lambda^Tx\le\lambda^Ty
x≤Ky当且仅当对于任意λ≥K∗0有λTx≤λTy
x
<
K
y
当且仅当对于任意
λ
≥
K
∗
0
有
λ
T
x
<
λ
T
y
x<_Ky当且仅当对于任意\lambda\ge_{K*}0有\lambda^Tx<\lambda^Ty
x<Ky当且仅当对于任意λ≥K∗0有λTx<λTy
最小元的对偶性质:
x是S上关于广义不等式
≤
K
\le_K
≤K的最小元的充要条件是,对于所有
λ
>
K
∗
0
\lambda>_{K^*}0
λ>K∗0,x是在
z
∈
S
z\in S
z∈S上及消化
λ
T
z
\lambda^Tz
λTz的唯一最优解.从几何上看,这意味着对于任意
λ
>
K
∗
0
\lambda>_{K^*}0
λ>K∗0,超平面
{
z
∣
λ
T
(
z
−
x
)
=
0
}
\{z|\lambda^T(z-x)=0\}
{z∣λT(z−x)=0}是在x处对S的一个严格支撑超平面
极小元的对偶性质:
如果
λ
>
K
∗
0
\lambda>_{K^*}0
λ>K∗0并且x在
z
∈
S
z\in S
z∈S上极小化
λ
T
z
\lambda^Tz
λTz,那么x是极小的