对偶锥与广义不等式

令K是一个锥.集合
K ∗ = { y ∣ x T y ≥ 0 , ∀ x ∈ K } K^*=\{y|x^Ty\ge0,\forall x\in K\} K={yxTy0,xK}是K的对偶锥
它是锥并且是凸的,即便K不凸

从几何上看 y ∈ K ∗ y\in K^* yK当且仅当-y是K在原点的一个支撑超平面的法线

对偶锥满足的性质:
K ∗ K^* K是闭凸锥
K 1 ⊆ K 2 K_1\subseteq K_2 K1K2可导出 K 1 ∗ ⊆ K 2 ∗ K_1^*\subseteq K_2^* K1K2
如果 K 有非空内部 , 那么 K ∗ 是尖的 如果K有非空内部,那么K*是尖的 如果K有非空内部,那么K是尖的
如果 K 的闭包是尖的 , 那么 K ∗ 有非空内部 如果K的闭包是尖的,那么K^*有非空内部 如果K的闭包是尖的,那么K有非空内部
K ∗ ∗ 是 K 的凸包的闭包 . ( 因此如果 K 是凸和闭的 , 那么它对偶的对偶就是自身 ) K^{**}是K的凸包的闭包.(因此如果K是凸和闭的,那么它对偶的对偶就是自身) K∗∗K的凸包的闭包.(因此如果K是凸和闭的,那么它对偶的对偶就是自身)

锥定义的广义不等式的对偶不等式就锥的对偶锥定义的广义不等式
广义不等式及其对偶有一些重要性质
x ≤ K y 当且仅当对于任意 λ ≥ K ∗ 0 有 λ T x ≤ λ T y x\le_Ky当且仅当对于任意\lambda\ge_{K*}0有\lambda^Tx\le\lambda^Ty xKy当且仅当对于任意λK0λTxλTy
x < K y 当且仅当对于任意 λ ≥ K ∗ 0 有 λ T x < λ T y x<_Ky当且仅当对于任意\lambda\ge_{K*}0有\lambda^Tx<\lambda^Ty x<Ky当且仅当对于任意λK0λTx<λTy

最小元的对偶性质:
x是S上关于广义不等式 ≤ K \le_K K的最小元的充要条件是,对于所有 λ > K ∗ 0 \lambda>_{K^*}0 λ>K0,x是在 z ∈ S z\in S zS上及消化 λ T z \lambda^Tz λTz的唯一最优解.从几何上看,这意味着对于任意 λ > K ∗ 0 \lambda>_{K^*}0 λ>K0,超平面 { z ∣ λ T ( z − x ) = 0 } \{z|\lambda^T(z-x)=0\} {zλT(zx)=0}是在x处对S的一个严格支撑超平面

极小元的对偶性质:
如果 λ > K ∗ 0 \lambda>_{K^*}0 λ>K0并且x在 z ∈ S z\in S zS上极小化 λ T z \lambda^Tz λTz,那么x是极小的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值