误差增长,收敛速度,二分法求函数近似解

误差增长

有一个初始误差 E 0 E_0 E0,它经过n次操作后有误差 E n E_n En
E n ≈ C n E 0 E_n≈CnE_0 EnCnE0这是线性误差增长
E n ≈ C n E 0 E_n≈C^nE_0 EnCnE0这是指数误差增长

收敛速率

lim ⁡ h − > 0 G ( h ) = 0 \lim_{h->0} G(h)=0 limh>0G(h)=0并且 F ( h ) = L F(h)=L F(h)=L,如果有一个常数 K K K满足
∣ F ( h ) − L ∣ < = K ∣ G ( h ) ∣ |F(h)-L|<=K|G(h)| F(h)L<=KG(h),对于一个极小的h
那么记作 F ( h ) = L + O ( G ( h ) ) F(h)=L+O(G(h)) F(h)=L+O(G(h))

二分法求函数近似解

连续函数如果f(a)和f(b)符号相反,他们之间一定有个根是f(x)=0,可以用二分法迭代缩小区间求近似解

简单迭代法

求解 f ( x ) = 0 f(x)=0 f(x)=0,可以把方程转换成 x = g ( x ) x=g(x) x=g(x)的形式,然后给定一个初始x,代入g(x)更新,反复迭代到g(x)和x差异很小,这个方法收敛与否取决于g(x)的选取
x 3 − 3 x − 1 = 0 x^3-3x-1=0 x33x1=0可以转成
x = 3 x + 1 3 x=\sqrt[3]{3x+1} x=33x+1 ,收敛
x = 1 3 ( x 3 − 1 ) x=\frac{1}{3}(x^3-1) x=31(x31),不收敛

牛顿法求近似解

先随便找个 x 0 x_0 x0, 泰勒展开到一次项,然后解出一个 x 1 x_1 x1作为新的 x 0 x_0 x0,然后反复迭代

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x)=f(x_0)+f'(x_0)(x-x_0) f(x)=f(x0)+f(x0)(xx0)

x 1 = x 0 − f ( x 0 ) f ′ ( x 0 ) x_1=x_0-\frac{f(x_0)}{f'(x_0)} x1=x0f(x0)f(x0)

简化牛顿法

x k + 1 = x k − f ( x k ) f ′ ( x 0 ) x_{k+1}=x_k-\frac{f(x_k)}{f'(x_0)} xk+1=xkf(x0)f(xk)

割线法和斯蒂芬森法用其他东西近似替代导数

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值