泰勒多项式

泰勒展开

f ( x ) = P n ( x ) + R n ( x ) f(x)=P_n(x)+R_n(x) f(x)=Pn(x)+Rn(x)

P n ( x ) = ∑ 0 n f ( k ) ( x 0 ) k ! ( x − x 0 ) k P_n(x)=\sum_0^n\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k Pn(x)=0nk!f(k)(x0)(xx0)k

R n ( x ) = f ( n + 1 ) ( ξ x 0 ) ( n + 1 ) ! ( x − x 0 ) n + 1 R_n(x)=\frac{f^{(n+1)}(\xi{x_0})}{(n+1)!}(x-x_0)^{n+1} Rn(x)=(n+1)!f(n+1)(ξx0)(xx0)n+1

这表示把函数展开成一个多项式的和以及一个误差项

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值