题目来源:PAT A1003 Emergency
题目大意:
给出N个城市,M条无向边。每个城市中都有一定数目的救援小组,所有边的边权已知。现在给出起点和终点,求从起点到终点的最短路径条数及最短路径上的救援小组之和。如果有多条最短路径,则输出数目之和最大的。
#include <iostream>
#include <algorithm>
using namespace std;
const int INF = 0x3fffffff;
const int maxv = 500;
int n, m, s, e; //顶点个数,边数,起点编号,终点编号
int G[maxv][maxv];
int dis[maxv]; //从起点到各点的最短距离
bool vis[maxv] = {false};
int value[maxv]; //各点的救援队数量
int total_value[maxv]; //从起点到各点的最大数量的救援队
int num[maxv]; //从起点到各点的最短路径条数
void Dijkstra(int s)
{
fill(dis, dis + maxv, INF);
for (int i = 0; i < n; i++)
{
dis[s] = 0;
total_value[s] = value[s];
num[s] = 1;
int u = -1;
int min = INF;
for (int j = 0; j < n; j++)
{
if (vis[j] == false && dis[j] < min)
{
u = j;
min = dis[j];
}
}
if (u == -1) //找不到小于INF的d[u],说明剩下的顶点和起点s不连通
{
return;
}
vis[u] = true;
for (int v = 0; v < n; v++)
{
if (vis[v] == false && G[u][v] != INF)
{
if (dis[u] + G[u][v] < dis[v]) //以u为中介点时能令d[v]变小
{
dis[v] = dis[u] + G[u][v];
num[v] = num[u];
total_value[v] = total_value[u] + value[v];
}
else if (dis[u] + G[u][v] == dis[v]) //找到一条长度相同的路径
{
if (total_value[v] < total_value[u] + value[v]) //以u为中介点时点权之和更大
{
total_value[v] = total_value[u] + value[v]; //w[v]继承自w[u]
num[v] += num[u]; //最短路径条数与点权无关,必须写在外面
}
}
}
}
}
int main()
{
int u, v, w;
cin >> n >> m >> s >> e;
for (int i = 0; i < n; i++)
{
cin >> value[i];
}
fill(G[0], G[0] + maxv * maxv, INF);
for (int i = 0; i < m; i++)
{
cin >> u >> v >> w;
G[u][v] = G[v][u] = w;
}
Dijkstra(s);
cout << num[e] << ' ' << total_value[e] << endl;
return 0;
}