信号与系统
文章目录
信号的函数表示以及系统分析方法
重要公式
常用连续信号
(1)实指数信号: f ( t ) = A e α t f(t)=Ae^{\alpha t} f(t)=Aeαt
(2)复指数信号: f ( t ) = A e s t f(t)=Ae^{st} f(t)=Aest s = σ + j ω s=\sigma+j\omega s=σ+jω
(3)正弦信号: f ( t ) = A s i n ( ω t + θ ) f(t)=Asin(\omega t+\theta) f(t)=Asin(ωt+θ)
(4)抽样函数: S a ( t ) = s i n t t Sa(t)=\frac{sint}{t} Sa(t)=tsint
(5)单位斜变信号: R 1 ( t ) = { t t ≥ 0 0 t < 0 R_1(t)=\left\{ \begin{array}{rcl} t & & {t\ge0}\\ 0 & & {t<0} \end{array} \right. R1(t)={
t0t≥0t<0
(6)单位阶跃信号: ϵ ( t ) = { 1 t ≥ 0 0 t < 0 \epsilon(t)=\left\{ \begin{array}{rcl} 1 & & {t\ge0}\\ 0 & & {t<0} \end{array} \right. ϵ(t)={
10t≥0t<0
d d t R 1 ( t ) = ϵ ( t ) \frac{d}{dt}R_1(t)=\epsilon(t) dtdR1(t)=ϵ(t)
(7)矩形脉冲信号: G 1 ( t ) = ϵ ( t ) − ϵ ( t − t 0 ) G_1(t)= \epsilon(t)- \epsilon(t-t_0) G1(t)=ϵ(t)−ϵ(t−t0)
(8)符号函数: s g n ( t ) = { 1 t > 0 − 1 t < 0 sgn(t)=\left\{ \begin{array}{rcl} 1 & & {t>0}\\ -1 & & {t<0} \end{array} \right. sgn(t)={
1−1t>0t<0
ϵ ( t ) = 1 2 + 1 2 s g n ( t ) \epsilon(t)=\frac{1}{2}+\frac{1}{2}sgn(t) ϵ(t)=21+21sgn(t)
单位冲激信号
定义1: δ ( t ) = lim △ → 0 = 1 △ [ ϵ ( t + △ 2 ) − ϵ ( t − △ 2 ) ] \delta(t)={\lim_{\triangle \to 0}}=\frac{1}{\triangle}[ \epsilon(t+\frac{\triangle}{2})- \epsilon(t-\frac{\triangle}{2})] δ(t)=lim△→0=△1[ϵ(t+2△)−ϵ(t−2△)]
定义2: ∫ − ∞ + ∞ δ ( t ) d t = 1 \int_{- \infty}^{+ \infty} \delta(t) dt=1 ∫−∞+∞δ(t)dt=1, δ ( t ) = 0 \delta(t)=0 δ(t)=0 t ≠ 0 t\neq0 t=0
冲激函数为偶函数,具有单位取样性质。
冲击偶信号
单位冲激信号的导数,为奇函数,性质可由类似推导得到。
连续信号的分解
奇部+偶部 虚部+实部
系统的性质
(1)线性:齐次性和可加性
(2)时不变性
(3)微分性
(4)因果性:输出变化不发生在输入变化前
(5)稳定性:BIBO
连续时间系统的时域分析
冲激响应与阶跃响应
h ( t ) = d d t g ( t ) h(t)=\frac{d}{dt}g(t) h(t)=dtdg(t)
卷积积分及其性质
r ( t ) = ∫ − ∞ + ∞ e ( τ ) h ( t − τ ) d τ r(t)=\int_{-\infty}^{+\infty}e(\tau)h(t-\tau)d\tau r(t)=∫−∞+∞e(τ)h(t−τ)dτ
性质:交换律,分配律,结合律,微分性,积分性,尺度变换,时移
连续信号的傅里叶分析
傅里叶级数的定义
(1)三角式:
f ( t ) = a 0 + ∑ n = 1 ∞ a n c o s n ω 1 t + b n s i n n ω 1 t f(t)=a_0+\sum_{n=1}^{\infty}a_ncosn\omega_1t+b_nsinn\omega_1t f(t)=a0+∑n=1∞ancosnω1t+bnsinnω1t
a 0 = 1 T ∫ T f ( t ) d t a_0=\frac{1}{T}\int_{T}f(t)dt a0=T1∫Tf(t)dt
a n = 2 T ∫ T f ( t ) c o s n ω 1 t d t a_n=\frac{2}{T}\int_{T}f(t)cosn\omega_1tdt an=T2∫Tf(t)cosnω1tdt
b n = 2 T ∫ T f ( t ) s i n n ω 1 t d t b_n=\frac{2}{T}\int_{T}f(t)sinn\omega_1tdt bn=T2∫Tf(t)sinnω1tdt
(2)复指数形式
f ( t ) = ∑ n = − ∞ ∞ F n e j n ω 1 t f(t)=\sum_{n=-\infty}^{\infty}F_ne^{jn\omega_1t} f(t)=∑n=−∞∞Fnejnω1t
傅里叶级数的主要性质
f ∗ ( t ) : F − n ∗ f^*(t):F^*_{-n} f∗(t):F−n∗
f ( − t ) : F − n f(-t):F_{-n} f(−t):F−n
f ( t ) c o s ω 1 t : 1 2 ( F n + 1 + F n − 1 ) f(t)cos\omega_1t:\frac{1}{2}(F_{n+1}+F_{n-1}) f(t)cosω1t:21(Fn+1+Fn−1)
f ( t ) s i n ω 1 t : 1 2 j ( F n − 1 + F n + 1 ) f(t)sin\omega_1t:\frac{1}{2j}(F_{n-1}+F_{n+1}) f(t)sinω1t:2j1(Fn−1+Fn+1)
f ( k ) ( t ) : ( j n ω 1 ) k F n f^{(k)}(t):(jn\omega_1)^kF_n f(k)(t):(jnω1)kFn
f ( t − t 0 ) : F n e − j n ω 1 t 0 f(t-t_0):F_ne^{-jn\omega_1t_0} f(t−t0):Fne−jnω1t0
帕斯瓦尔定理: f 2 ( t ) ‾ = ∑ n = − ∞ ∞ ∣ F n ∣ 2 \overline{f^2(t)}=\sum_{n=-\infty}^{\infty}|F_n|^2 f2(t)=∑n=−∞∞∣Fn∣2
傅里叶变换的定义
F ( w ) = ∫ − ∞ + ∞ f ( t ) e − j ω t d t F(w)=\int_{-\infty}^{+\infty}f(t)e^{-j\omega t}dt F(w)=∫−∞+∞f(t)e−jωtdt
f ( t ) = 1 2 π ∫ − ∞ + ∞ F ( ω ) e − j ω t d ω f(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}F(\omega)e^{-j\omega t}d\omega f(t)=2π