最近在学习矩阵分析时了解到了NMF这个方法,发现其潜力巨大,应用场景广阔。目前的算法场景中,NMF可以应用的领域很广,源于其对事物的局部特性有很好的解释。在众多应用中,NMF能被用于发现数据库中的图像特征,便于快速自动识别应用;能够发现文档的语义相关度,用于信息自动索引和提取;能够在DNA阵列分析中识别基因等等。我们将对此作一些大致的描述。但是最有效的就是图像处理领域,是图像处理的数据降维和特征提取的一种有效方法。
1、特征学习
这一点思想类似(Principal Component Analysis)主成分分析,但是在实际工程环境当中都要比PCA效果要好,其中思想如下:
- 测试数据在NMF算法上学习 Vtrain→dictionaryW
- 利用W去分解新的测试examples Vn:
vn≈∑n=1Khknwk,其中kn>=0
- 把hn作为example n的特征向量
下面是对人物脸部特征学习的NMF算法,图为把人的脸部的不同特征显示出来:
2、图像分析
NMF最成功的一类应用是在图像的分析和处理领域。图像本身包含大量的数据,计算机一般将图像的信息按照矩阵的形式进行存放,针对图像的识别、分析和处理也是在矩阵的基础上进行的。这些特点使得NMF方法能很好地与图像分析处理相结合。人们