开源 AI 3D场景生成器infinigen 国内本地部署教程+乌班图镜像

本文介绍了在Windows上通过WSL2部署infinigen3D场景生成器的步骤,包括WindowsSubsystemforLinux(WSL2)的安装、Ubuntu22.04的配置、环境变量设置以及如何使用傻瓜包解决常见问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里优先放上infinigen官方网站

官网:https://infinigen.org/
github:https://github.com/princeton-vl/infinigen

官方展示的场景生成效果图

    infinigen是一款运行于乌班图系统的3D场景生成器,在国内CSDN上已经有多个大佬做过通过官方Github的部署教程,但是在使用官方Github进行部署时会出现一些如乌班图子系统安装,虚拟机环境配置,python环境配置,官方库下载部分文件无法下载成功等多种问题存在。因此我今天带来了一个基于windows乌班图子系统进行部署的傻瓜包,这个傻瓜包内有乌班图系统与完整的infinigen库,并配置了相关环境,只需在windows上安装wsl2并启动相关服务,几行命令行即可开始使用。

    下面先引用部分知乎上一切随缘大佬有关windows wsl2的安装教程

原网址:https://zhuanlan.zhihu.com/p/386590591

    1.以管理员身份启动Windows Powershell并输入代码

        dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all     /norestart

等待工具安装完成

    2.检查WSL2的要求:win+R打开运行,然后输入winver检查windows版本,需要大于1903

win+R打开运行,然后输入winver

此版本需要大于1903

    3.启用虚拟化:以管理员打开powershell输入下列命令

        dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart

等待虚拟化启动

    4.重新启动电脑,然后下载X64的WSL2 Linux内核升级包并安装

WSL2 Linux内核升级包


WSL2 Linux内核升级包安装完成

    5.设置WSL默认版本:以管理员打开powershell输入下列命令:

        wsl --set-default-version 2

    6.前往微软应用商店安装Ubuntu22.04LTS

Ubuntu22.04LTS

    

乌班图子系统安装完成后

  7.挂载配置好的乌班图镜像

        乌班图镜像wsl-ubuntu22.04.tar下载

        链接:https://pan.baidu.com/s/10iFkDtn1ztKT2h-_Ne3owA?pwd=1234 

        提取码:1234 

        

        (可选)注销原有的Ubuntu22.04:以管理员打开powershell输入下列命令:

        wsl --unregister Ubuntu-22.04

        挂载配置好的乌班图镜像wsl-ubuntu22.04.tar:以管理员打开powershell输入下列命令:

        wsl --import Ubuntu-22.04 e:\wsl-ubuntu22.04 e:\wsl-ubuntu22.04.tar --version 2

        注:

        e:\wsl-ubuntu22.04是子系统安装路径

        e:\wsl-ubuntu22.04.tar是安装包路径

        需根据实际情况对上述两个路径进行修改

挂载好后home文件夹有UP之前创建好的用户文件

        8.使用官方代码进行测试

            首先找到之前安装的乌班图操作行启动器快捷方式启动子系统命令行

 

            

 

        进入指定文件夹启动环境:在root用户模式下命令行中输入:

            cd /home/zty/infinigen/worldgen

                #进入指定文件夹#

            export BLENDER="/home/zty/infinigen/blender/blender"

                #切换环境路径#

            source activate infinigen

                #启动虚拟环境#

虚拟环境启动成功后会出现(infinigen)前缀

        命令行输入指令:

            $BLENDER --background --python tools/generate_individual_assets.py -- -f             CoralFactory -n 2 --save_blend

等待生成

images中为预览图,scenes中为bland模型需要在blander中打开

至此,所有部署工作都已完成

部分生成代码可以查看官方git

 

### Ubuntu 上部署 Ollama 和 DeepSeek 教程 #### 准备工作 为了顺利在 Ubuntu 系统上完成 Ollama 和 DeepSeek 的部署,确保操作系统是最新的版本,并安装必要的软件包和库。更新现有包列表并升级已安装的包到最新版本[^1]。 ```bash sudo apt update && sudo apt upgrade -y ``` #### 安装依赖项 根据官方文档说明,准备所需的开发工具链和其他可能需要的基础组件。对于大多数 Linux 发行版来说,这通常意味着安装 Python、pip 以及其他一些常见的构建工具。 ```bash sudo apt install python3-pip build-essential libssl-dev libffi-dev python3-dev -y ``` #### 获取并配置 Ollama 访问 Ollama 的官方网站或 GitHub 页面下载最新的稳定发行版源码压缩文件。解压后进入项目目录按照 README.md 中给出的具体指示操作来编译和设置环境变量等。 #### 配置 DeepSeek 假设 DeepSeek 是基于深度学习的应用程序,则需先确认其运行所必需的支持框架已被正确安裝(比如 TensorFlow 或 PyTorch)。接着从开发者提供的资源处取得预训练好的模型权重文件以及相应的配置脚本。 ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = 'path_to_deepseek_model' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) ``` #### 测试与验证 完成上述步骤之后,在本地环境中执行简单的测试案例以检验整个系统的功能性是否正常。可以编写一小段代码调用 API 接口来进行预测任务,观察返回的结果是否合理。 #### 正式部署 当一切准备工作就绪并且经过充分调试无误后,可以选择合适的方式将服务发布出去供更多用户使用。考虑采用 Docker 容器化方案简化跨平台迁移过程;或者利用云服务平台实现自动化运维管理等功能优化用户体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值