一、NeRF介绍
Neural Radiance Fields (NeRF) 是一种用于3D场景表示和渲染的新兴技术,它通过使用神经网络来模拟和生成逼真的3D场景。NeRF 的主要创新在于它能够从少量的2D图像生成高质量的3D表示,适用于计算机视觉、图形学以及虚拟现实等领域。
二、NeRF基本概念
-
体积渲染:
- NeRF 使用体积渲染技术来表示3D场景。体积渲染涉及在3D空间中采样光线,通过计算光线在不同体积密度和颜色上的交互来生成图像。NeRF 的关键在于它使用神经网络来建模体积密度和颜色。
-
辐射场:
- 辐射场是指在3D空间中,给定一个位置和视角,计算该点的颜色和密度。NeRF 使用一个神经网络来学习从3D坐标和视角方向到颜色和密度的映射。
-
神经网络建模:
- NeRF 使用多层感知器(MLP)神经网络来学习和表示场景的辐射场。输入为3D空间中的坐标(x, y, z)和视角方向,输出为该点的颜色和密度。通过大量的训练图像,网络能够捕捉和重现场景的复杂几何结构和细节。
三、NeRF 的应用
-
3D 场景重建: