CDP项目
说明:
CDP是(customer data platform)的缩写,译为客户数据平台。现在很多线下企业转型,都往线上发展,那么需要做到了解客户是谁,这似乎很简单,但客户与业务互动渠道的激增,使这个简单的目标变得极其复杂。因为每个部门的数据不同步,针对的对象不同,都有自己的应用场景。这些部门各自产生新的、孤立的、片面的客户数据,却无法快速同步,甚至团队之间还怀疑对方数据是否正确。因此,企业需要一个统一真实的数据源来描述客户,而不是任由客户的不同维度数据由不同部门各自存储。所以,客户数据平台(Customer Data Platform, CDP)获得越来越多的关注就不足为奇了。
定义:
CDP 的目标是汇集所有客户数据并将数据存储在统一的、可多部门访问的数据平台中,让企业各个部门都可以轻松使用。
特征:
数据流入:
CDP可以快速连接来自市场、销售、客服等各部门的各类数据源中存储的客户数据。不管是实名客户,还是匿名客户,都可以在CDP中根据业务定义得到合并。为企业提供了完整的、不断更新的客户画像,而不是流于表面的统计数据。
数据流出:
CDP有能力快速对接企业内外部的各种数据源,包括广告投放、CRM、客服系统、网站、微信、App、营销、大数据分析与BI等等。只有数据流动起来,CDP才能产生更大的价值。
业务驱动:
CDP是为业务人员驱动建立的,而不是IT人员。业务人员可以自行决定需要什么数据源、如何对用户打标签、把数据传递到哪些平台等等。CDP应该有极其简单的界面,业务团队可以直接在CDP上进行操作,而不是依赖于IT部门。
区别:
CDP与传统CRM和DMP的区别:
- CRM:传统的CRM或者会员系统是用来和客户进行交互的,只基于很少量的历史数据来构建客户画像。CRM管理最多的是已购买的实名客户,但匿名客户的行为难以识别并且获得洞察。同时,传统CRM的设计目的不是从各类数据源吸收大量数据,因为它一般比较封闭,从外部系统获取数据的成本较高。但是CDP可以连接到各种类型、各种来源的客户数据。这些数据可以是内部数据,也可以是外部数据;可以是结构化数据,也可以是非结构化数据;可以是实时的,也可以是非实时的。这种连接的能力,可以让企业对客户情况有一个更快更全面的理解,并且及时做出反应。
- DMP:DMP的设计目的是为广告提供服务,尤其是通过Cookie实现重定向广告。但是在DMP中,大部分信息是匿名的,而且会在cookie生存失效(一般90天)后过期。CDP的设计目的是建立持久的客户记录,这意味着它存储数据并保留历史记录。然后, 将其与客户所有数据结合使用, 即可得到一条记录。相较DMP,CDP会同时关注匿名客户与实名客户,客户的信息也会更细致。
想了解DMP项目的可以出门左拐看看我关于DMP项目的描述------>DMP项目链接。
效益:
真正的客户全景画像
CDP整合集成了企业在每个渠道上和客户交互的第一方数据,从移动到 WEB、POS系统、到后端ERP、支付服务、再到客服系统、甚至CRM,企业拥有一个持续更新的客户全景画像,并且基于这个画像灵活制定各种营销策路。
更能打动人心的客户旅程
客户与企业的互动分散在各种不同的触点,需要使用不同的工具。CDP可以将各个工具串联起来,业务人员可以自行在CDP客户旅程配置的可视化界面上,更快捷地制定出符合客户需求的客户旅程。
客户数据的单一真实来源(Single Source of Truth)
CDP作为客户数据的单一真实来源,在整个组织中强制执行通用的数据标准,保证数据是正确、一致且符合内部隐私和安全策略的,并且这些数据可以被传递到企业业务团队使用的任何工具中去。CDP可以帮助企业业务团队更快地使用新工具, 并使每个团队成员能在统一的客户数据库中工作。
实现:
1.数据接入:
从各部门将特征化数据同步到CDP项目数据端,然后进行数据清洗,规整,入库。
涉及到的相关技术有:
- DataX:阿里的数据同步工具,支持在阿里的环境来进行格式化数据的互道。
这里主要是把各部门的历史数据同步过来,做数据分析和清洗。
这里举个MongoDB到结构化数据库的例子,因为这个是脚本形式,其他的结构化数据库互导只需要配置即可。
{
"type": "job",
"steps": [
{
"stepType": "mongodb",
"parameter": {
"datasource": "mongo_order",
"query": "{receivingTime:{$gte:'${order_date_before} 05:00:00',$lte:'${order_date} 04:59:59'}}",
"column": [
{
"name": "_id",
"type": "ObjectId"
},
{
"name": "orderNo",
"type": "String"
},
{
"name": "classExtId",
"type": "String"
}
],
"collectionName": "t_order_product"
},
"name": "Reader",
"category": "reader"
},
{
"stepType": "odps",
"parameter": {
"partition": "ds=${bizdate}",
"truncate": true,
"datasource": "odps_first",
"column": [
"id",
"orderno",
"classextid"
],
"emptyAsNull": false,
"table": "mg_t_order_product"
},
"name": "Writer",
"category": "writer"
}
],
"version": "2.0",
"order": {
"hops": [
{
"from": "Reader",
"to": "Writer"
}
]
},
"setting": {
"errorLimit": {
"record": ""
},
"speed": {
"throttle": false,
"concurrent": 4
}
}
}
- SparkStreaming:这是数据实时流,主要是是把线上、线下order表和order_detail这种实时产生的数据,导入到cdp的表里(作此说明:之后说道的CDP都指CDP项目的整体,不单指某一个模块),因为这种数据实时性较高,在实时营销这一模块里需要针对某个活动生成实时报表。
- Sqoop:这个是大数据平台里面的一个由Apache提供的数据导入、导出的工具。相关资料可以看我之前的一片关于sqoop的博客
2.数据分析:
数据统一接入AnalyticDB(阿里的分析型数据仓库,想了解的可以点击了解,之后就简称ADB),在数据进入数据仓库后,就开始是数据接入开发,简而言之就是数仓的搭建,这里我不过多说明,想了解的可以去看另一个我收藏的博客------>数据仓库
数仓搭建完成之后数据被分为了四层:ODS(临时存储层)、PDW(数据仓库层)、MID(数据集市层)、APP(应用层)
后续的工作就是根据业务需求,针对不用的场景,对数据进行分析,规整,落地。这里简单的针对系统做个简单的介绍,系统分为CRM平台和运营平台。
这里先介绍CRM平台
1.首页:会员信息展示
这里主要是针对会员数据做一个展示,大概观察近期会员活动情况
2.标签
这里则是根据数据分析,对会员打上标签,服务于下面的营销,从而体现数据价值,这里也不过多的介绍,很多东西都涉及到公司机密。
再就是运营平台
这个平台则是控制标签的下发,营销活动的开启,分组运算等一系列后台操作的动作,也不做详解,有意想学习更多的朋友,可以私下给我发消息。
这里系统讲解的过于简单,但是其中还是涉及到很多前沿技术和学术思想(机器学习,模型训练,RFM标签…等),更多的东西我会在后续时间写进博客,有兴趣的朋友可以多来看看,毕竟博主是个技术员,语言表达着实有点欠缺。