贝叶斯公式推导

贝叶斯单一观测

p ( x / z ) = p ( z / x ) p ( x ) p ( z ) p(x/z)=\tfrac{p(z/x)p(x)}{p(z)} p(x/z)=p(z)p(z/x)p(x)

贝叶斯多种观测

p ( x / z , u ) = p ( z , x , u ) p ( z , u ) = p ( z / x , u ) p ( x , u ) p ( z , u ) = p ( z / x , u ) p ( x / u ) p ( u ) p ( z / u ) p ( u ) = p ( z / x , u ) p ( x / u ) p ( z / u ) p(x/z,u)=\tfrac{p(z,x,u)}{p(z,u)} =\tfrac{p(z/x,u)p(x,u)}{p(z,u)} =\tfrac{p(z/x,u)p(x/u)p(u)}{p(z/u)p(u)} =\tfrac{p(z/x,u)p(x/u)}{p(z/u)} p(x/z,u)=p(z,u)p(z,x,u)=p(z,u)p(z/x,u)p(x,u)=p(z/u)p(u)p(z/x,u)p(x/u)p(u)=p(z/u)p(z/x,u)p(x/u)

SLAM中贝叶斯公式推导

B e l ( x t ) = p ( x t / x 0 , z 1 : t , u 1 : t ) = p ( z t / x t , z 1 : t − 1 , u 1 : t ) p ( x t / x 0 , z 1 : t − 1 , u 1 : t ) p ( z t / z 1 : t − 1 , u 1 : t ) ( 1 ) = η p ( z t / x t ) p ( x t / x 0 , z 1 : t − 1 , u 1 : t ) ( 2 ) = η p ( z t / x t ) ∫ p ( x t / x t − 1 , z 1 : t − 1 , u 1 : t ) p ( x t − 1 / x 0 , z 1 : t − 1 , u 1 : t ) d x t − 1 ( 3 ) = η p ( z t / x t ) ∫ p ( x t / x t − 1 , u t ) p ( x t − 1 / x 0 , z 1 : t − 1 , u 1 : t ) d x t − 1 ( 4 ) = η p ( z t / x t ) ∫ p ( x t / x t − 1 , u t ) p ( x t − 1 / x 0 , z 1 : t − 1 , u 1 : t − 1 ) d x t − 1 ( 5 ) = η p ( z t / x t ) ∫ p ( x t / x t − 1 , u t ) B e l ( x t − 1 ) d x t − 1 \begin{aligned} Bel(x_{t})&=p(x_{t}/x_{0},z_{1:t},u_{1:t}) \\ &=\tfrac{p(z_{t}/x_{t},z_{1:t-1},u_{1:t})p(x_{t}/x_{0},z_{1:t-1},u_{1:t})}{p(z_{t}/z_{1:t-1},u_{1:t})} (1)\\ &=\eta p(z_{t}/x_{t}) p(x_{t}/x_{0},z_{1:t-1},u_{1:t}) (2) \\ &=\eta p(z_{t}/x_{t}) \int p(x_{t}/x_{t-1},z_{1:t-1},u_{1:t}) p(x_{t-1}/x_{0},z_{1:t-1},u_{1:t})dx_{t-1}(3) \\ &=\eta p(z_{t}/x_{t}) \int p(x_{t}/x_{t-1},u_{t}) p(x_{t-1}/x_{0},z_{1:t-1},u_{1:t})dx_{t-1}(4) \\ &=\eta p(z_{t}/x_{t}) \int p(x_{t}/x_{t-1},u_{t}) p(x_{t-1}/x_{0},z_{1:t-1},u_{1:t-1})dx_{t-1}(5) \\ &=\eta p(z_{t}/x_{t}) \int p(x_{t}/x_{t-1},u_{t}) Bel(x_{t-1})dx_{t-1} \end{aligned} Bel(xt)=p(xt/x0,z1:t,u1:t)=p(zt/z1:t1,u1:t)p(zt/xt,z1:t1,u1:t)p(xt/x0,z1:t1,u1:t)(1)=ηp(zt/xt)p(xt/x0,z1:t1,u1:t)(2)=ηp(zt/xt)p(xt/xt1,z1:t1,u1:t)p(xt1/x0,z1:t1,u1:t)dxt1(3)=ηp(zt/xt)p(xt/xt1,ut)p(xt1/x0,z1:t1,u1:t)dxt1(4)=ηp(zt/xt)p(xt/xt1,ut)p(xt1/x0,z1:t1,u1:t1)dxt1(5)=ηp(zt/xt)p(xt/xt1,ut)Bel(xt1)dxt1
(1)式到(2)式,分母与x无关,是一个常数,为了方便表示用 η \eta η表示,由马尔科夫假设,在已知 x t x_{t} xt的情况下, z t z_{t} zt与{ z 1 : t − 1 , u 1 : t {z_{1:t-1},u_{1:t}} z1:t1,u1:t}无关,所以分子第一项化简为 p ( z t / x t ) p(z_{t}/x_{t}) p(zt/xt)

(2)式到(3)式,当前状态 x t x_{t} xt是基于之前所有状态估计得到的,至少它会受 x t − 1 x_{t-1} xt1影响,于是按照 x t − 1 x_{t-1} xt1时刻为条件概率展开: p ( x t − 1 / x 0 , z 1 : t − 1 , u 1 : t ) = p ( x t − 1 / x 0 , z 1 : t − 1 , u 1 : t − 1 ) = B e l ( x t − 1 ) p(x_{t-1}/x_{0},z_{1:t-1},u_{1:t})=p(x_{t-1}/x_{0},z_{1:t-1},u_{1:t-1})=Bel(x_{t-1}) p(xt1/x0,z1:t1,u1:t)=p(xt1/x0,z1:t1,u1:t1)=Bel(xt1)

(3)式到(4)式,由马尔科夫假设,当前时刻状态只和上一个时刻有关,所以 ∫ p ( x t / x t − 1 , z 1 : t − 1 , u 1 : t ) = ∫ p ( x t / x t − 1 , u t ) \int p(x_{t}/x_{t-1},z_{1:t-1},u_{1:t})=\int p(x_{t}/x_{t-1},u_{t}) p(xt/xt1,z1:t1,u1:t)=p(xt/xt1,ut)

(4)式到(5)式,考虑到t时刻的输入量 u t u_{t} ut与 t−1 时刻的状态无关,所以把 u t u_{t} ut拿掉, p ( x t − 1 / x 0 , z 1 : t − 1 , u 1 : t ) = p ( x t − 1 / x 0 , z 1 : t − 1 , u 1 : t − 1 ) = B e l ( x t − 1 ) p(x_{t-1}/x_{0},z_{1:t-1},u_{1:t})=p(x_{t-1}/x_{0},z_{1:t-1},u_{1:t-1})=Bel(x_{t-1}) p(xt1/x0,z1:t1,u1:t)=p(xt1/x0,z1:t1,u1:t1)=Bel(xt1)

总结:从最终的式子可以看出,SLAM中的贝叶斯框架就是:我们用轮速里程计运动数据 u t u_{t} ut来预测下一时刻机器人的位姿 x t x_{t} xt,接着用视觉传感器观测数据 z t z_{t} zt来对预测的位姿 x t x_{t} xt进行校正,这样就获得了当前时刻状态的后验。其实就是两个过程,状态预测状态更新

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值