Quadratic Assignment Problem 二次分配问题

1 问题定义

        二次分配问题(Quadratic Assignment Problem,QAP)是一种组合优化问题,涉及确定将设施分配到位置的最优方案。它的目标是找到最佳分配,以最小化设施对之间的总成本或距离,考虑到它们之间的相互作用以及对应位置之间的距离。

  1. 定义:

    • 设施集合:设施集合表示为F = {f1, f2, ..., fn},其中每个设施fi代表一个具体的设施。
    • 位置集合:位置集合表示为L = {l1, l2, ..., ln},其中每个位置lj代表一个具体的位置。
    • 设施之间的流量:表示为Flow矩阵F,其中F(i, j)表示将设施fi分配到位置lj时,流量的大小。
    • 位置之间的距离:表示为Distance矩阵D,其中D(i, j)表示将设施fi分配到位置lj时,位置之间的距离。
  2. 目标函数:

    • 目标是将设施分配到位置,以最小化总成本或距离。通常采用以下形式的目标函数:
      min ΣΣ F(i, k) * D(j, l) * X(i, j) * X(k, l)
      其中,X(i, j)是二进制变量,表示设施fi是否分配到位置lj。
  3. 约束条件:

    • 设施分配约束:每个设施只能分配到一个位置。
      Σ X(i, j) = 1,对于所有的i∈F
    • 位置分配约束:每个位置只能分配一个设施。
      Σ X(i, j) = 1,对于所有的j∈L

2 读取文件

#ifndef INPUT_H
#define INPUT_H

#include <string>
#include <vector>


class Input
{
public:
    Input(const std::string& filename);
    /// <summary>
    /// 读取文件内容
    /// </summary>
    void read();
    /// <summary>
    /// 返回文件名
    /// </summary>
    /// <returns></returns>
    std::string getFilename() const;
    /// <summary>
    /// 数据的大小
    /// </summary>
    /// <returns></returns>
    int getDimension() const;
    /// <summary>
    /// 返回距离矩阵
    /// </summary>
    /// <returns></returns>
    std::vector< std::vector<int> > getDistances() const;
    /// <summary>
    /// 返回位置矩阵
    /// </summary>
    /// <returns></returns>
    std::vector< std::vector<int> > getFlow() const;



private:
    //文件名
    std::string filename_;
    //维度
    int dimension_;
    //距离矩阵
    std::vector< std::vector<int> > distances_;
    //位置矩阵
    std::vector< std::vector<int> > flow_;
};

#endif

3 解决方案的父类设计

#ifndef QAP_SOLVER_H
#define QAP_SOLVER_H

#include <vector>
#include <algorithm>

class QAPSolver {
public:
    QAPSolver(const std::vector<std::vector<int>>& flowMatrix_, const std::vector<std::vector<int>>& distanceMatrix_);
    virtual ~QAPSolver() {}

    // 解决QAP的纯虚函数
    virtual void execut() = 0;

    // 获取解决后的最优排列
    virtual std::vector<int> getBestSolution() const;

    // 获取解决后的目标函数值
    virtual int getCost() const;

    // 计算成本
    int claculCost(std::vector<int>& solution);

protected:
    //解决方案
    std::vector<int> bestSolution;
    //成本
    int cost;
    // 大小
    int size;
    //距离矩阵
    std::vector< std::vector<int> > distanceMatrix;
    //位置矩阵
    std::vector< std::vector<int> > flowMatrix;



};

#endif // !QAP_SOLVER_H


3 贪心算法

 

贪心算法的思想是基于局部最优选择来构建整体最优解。具体来说,在解决QAP的贪心算法中,我们按照一定的规则选择变量的排列顺序,以使得每次选择都是当前局部最优的。贪心算法的每一步都基于当前最佳选择,而不考虑整体的最优解。

在解决QAP的贪心算法中,我们首先生成一个初始的排列,然后根据特定的规则,逐个选择未安排的变量并插入到已安排的变量中,以便最小化目标函数的值。在每次选择时,我们计算当前变量与已安排变量之间的成本,并选择使成本最低的变量进行插入。

#ifndef GREEDY_H
#define GREEDY_H

#include "QAPSolver.h"

class greedy : public QAPSolver
{
public:

	greedy(const std::vector<std::vector<int>>& flowMatrix_, const std::vector<std::vector<int>>& distanceMatrix_) : QAPSolver(flowMatrix_, distanceMatrix_) {};
	
	void execut() override;



};

#endif // !GREEDY_H

#include "greedy.h"

void greedy::execut()
{
    //初始化排列
    std::vector<int> permutation(size);
    for (int i = 0; i < size; ++i) {
        permutation[i] = i;
    }

    std::sort(permutation.begin(), permutation.end(), [&](int a, int b) {
        int aSum = 0, bSum = 0;
        for (int j = 0; j < size; ++j) {
            aSum += flowMatrix[a][j] * distanceMatrix[permutation[j]][permutation[a]];
            bSum += flowMatrix[b][j] * distanceMatrix[permutation[j]][permutation[b]];
        }
        return aSum < bSum;
        });

    bestSolution = permutation;

}



4 运行结果 

 

#include <iostream>
#include <memory>

#include "Input.h"
#include "greedy.h"


using namespace std;


int main(int argc, char* argv[])
{

    string filename = "";

    
    Input input(filename);


    unique_ptr<QAPSolver> pGreedy = make_unique<greedy>(input.getDistances(),input.getDistances());
    
    pGreedy->execut();
    cout << "Greedy Search: " << endl;
    cout << "\tCost: " << pGreedy->getCost() << endl;
    cout << "\tSolution: ";
    vector<int> solution = pGreedy->getBestSolution();
    for (int i = 0; i < solution.size(); ++i)
    {
        cout << solution[i] << " ";
    } cout << endl;

    cout << endl;
}

运行结果

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值