手写体数据识别——支持向量机案例
在本案例中,我们将使用支持向量机分类器对 Scikit-learn 的手写体数字图片数据集进行处理。
数据描述
邮政系统每天都会处理大量的信件,最重要的一环是根据信件上的收件人邮编进行识别和分类,以便确定信件的投送地点。原本这项任务是靠人工完成的,后来人们尝试让计算机代替人工。由于多数的邮编都是手写数字,并且样式各异,所以没有统一编制的规则可以很好地用于识别和分类。有大量研究证明,支持向量机可以在手写体数字图片的分类任务上展现量好的性能。本文以88的灰度图片,通过像素数据构成641维的特征向量,具体数字0~9作为标签训练模型。
导入数据
首先从 sklearn.datasets 里导入手写体数字加载器,并通过数据加载器获得手写体数字的数码图像数据,将其储存在 digits 变量中,查看数据规模和特征维度。
# 从 sklearn.datasets 里导入手写体数字加载器
from sklearn.datasets import load_digits
# 从通过数据加载器获得手写体数字的数码图像数据并储存在digits 变量中
digits = load_digits()
# 检视数据规模和特征维度
digits.data.shape
分割训练测试数据
将数据集分割为训练集与测试集,其中测试集占 25% ,训练集占 75% ,这里可使用 sklearn.cross_valiation 里的 train_test_split 模块来分割数据,代码如下:
# 从 sklearn.cross_validation 中导入 train_test_split 用于数据分割
from sklearn.model_selection import train_test_split
# 随机选取 25% 的数据作为测试样本,其余 75% 的数据作为训练样本。其中 test_size 是样本占比,
# 如果是整数的话就是样本的数量;random_state 是随机数的种子,不同的种子会造成不同的随机采样结果,相同的种子采样结果相同。
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.25, random_state=33)
数据标准化,训练模型,预测
# 从 sklearn.preprocessing 里导入数据标准化模块
from sklearn.preprocessing import StandardScaler
# 从sklearn.svm里导入基于线性假设的支持向量机分类器LinearSVC
from sklearn.svm import LinearSVC
# 从仍然需要对训练和测试的特征数据进行标准化
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
# 初始化线性假设的支持向量机分类器 LinearSVC
lsvc = LinearSVC(max_iter=10000)
#进行模型训练
lsvc.fit(X_train, y_train)
# 利用训练好的模型对测试样本的数字类别进行预测,预测结果储存在变量 y_predict 中
y_predict = lsvc.predict(X_test)
性能评估
# 使用模型自带的评估函数 score 进行准确性测评
print ('The Accuracy of Linear SVC is', lsvc.score(X_test, y_test))
# 使用 sklearn.metrics 里面的 classification_report 模块对预测结果做更加详细的分析
from sklearn.metrics import classification_report
print (classification_report(y_test, y_predict, target_names=digits.target_names.astype(str)))
从结果上看,precision 、recall 和 f1-score 的平均值都达到了 95% ,再结合准确性可知,支持向量机分类模型的确能提供比较高的手写体数字识别性能。
注意:精确率、召回率和 F1 指标都最先适用于二分类任务,这里编号的 0—9 十个数字代表了我们分类目标中的 10 个类别,因此这里计算这三个指标的方法是,在检验某一类别时,将其余 9 类视作一大类(阴性/负样本),这样一共做十次二分类任务即可。
参考
python 机器学习及实践——从零开始通往kaggle竞赛之路