图像处理论文
文章平均质量分 92
打着灯笼摸黑
这个作者很懒,什么都没留下…
展开
-
论文阅读笔记(15)--- Point completion Network
首先提出点云缺失补全的论文PCN本文贡献一种直接在3D点云上操作基于学习的点云补全算法一种新颖的网络架构,能够以由粗到细的方式生成密集的完整的点云大量实验证明了算法在点云补全上具有很好的效果,并且噪声和稀疏数据具有鲁棒性,在真实世界数据具有泛化性。相关工作现存的关于3D形状补全的方法主要可以分为三类:基于几何,基于对齐和基于学习的方法基于几何的方法:利用输入的部分几何元素进行补全,并没有引入其他数据。但是这些方法都有一个假设是缺失区域的几何结构可以直接从观察到的区域获得,这种假设并不适用原创 2022-05-12 14:34:31 · 942 阅读 · 0 评论 -
论文阅读笔记(14)--- PointNet++
参考PointNet论文和代码详解原作者的视频报告PointNet的局限性与传统的3DCNN分层提取特征相比,PointNet属于全局特征学习,只对单个点或者所有点进行操作,没有局部信息,对精细的特征难以学习,例如分割的时候会有所缺陷,此外在平移不变性上也会有所缺陷。PointNet++的改进因此,在原PointNet的基础上进行分层级的迭代学习,保留了置换不变性和几何不变性具体讲解一下这个过程,对于一组点云,首先圈出一组局部点云,根据这组点云数据利用PointNet生成一个高维点,因此根据原创 2022-05-04 19:16:24 · 1551 阅读 · 1 评论 -
论文阅读笔记(13)--- PointNet
现在开始学习点云系列的论文了,从最经典的PointNet开始。三维深度学习PointNet系列论文研究介绍传统的结构是将不规则的数据转为规则的形式,这样一个方法的缺陷在于:使得数据变得庞大,并且引入了量化伪影。因此,希望直接将3D点云投入训练,减小数据量。点云问题以及解决方案无序性:点云数据只是一系列的点,因此点的顺序并不影响整体的空间形状。旋转性:相同的点云在空间中经过一定的刚性变化(旋转或平移),坐标发生变化。对于第一个问题,希望得到的效果是,无论点云数据的顺序如果,网络提取出来的原创 2022-04-29 16:21:42 · 1697 阅读 · 0 评论 -
三种常见的正则化图像处理模型研究1
正则化是反问题中的一个重要课题,恰当地选取正则化项对于反问题的求解至关重要。图像复原是一个典型的反问题,因此正则化项的探讨对于图像复原也非常必要。论文介绍了Tikhonov正则、全变分正则及梯度的L0正则等三种正则化模型,我主要对于这篇文章的知识点进行梳理。原创 2019-04-27 12:54:27 · 7025 阅读 · 5 评论 -
三种常见的正则化模型研究2
https://pan.wps.cn/l/spzdj75?f=101[文件] 三种常见的正则化图像处理模型研究.pdf上次学习了第一个正则项,吉洪诺夫正则项。接下来介绍TV正则。相比用 Tikhonov 正则化去噪,用 TV 正则化模型去噪,效果更好模糊更少。ROF 模型具有保持边界的良好性质。文章主要是介绍了TV正则项的一些发展史:1.对偶投影法求解 ROF 模型。该法把原始问题的求解...原创 2019-04-27 16:36:05 · 3402 阅读 · 0 评论 -
基于深度学习的CBCT重建方法研究(1)
摘要理解:锥形束CT(CBCT)通过减少减少X射线管阴极电流可以减少对患者的辐射,但是这样重建出来的图像的质量会变差。因此,如何提高低剂量CBCT重建图像的质量是一个值得研究的课题。传统的统计迭代重建法通过设计不同的正则项来重建,TV正则项(全变分)能保护边缘和去燥,但是会产生阶梯效应;而hessian正则项在抑制阶梯时会让边缘模糊化。本文是利用深度学习学习潜在的正则项,提出来一种基于卷积神经网...原创 2019-05-26 12:57:32 · 6227 阅读 · 4 评论 -
Non-local Sparse Models for Image Restoration论文阅读笔记
摘要本文提出了两种在图像恢复中的不同方法:①learning a basis set (dictionary) adapted to sparse signal descriptions—学习适合稀疏信号描述的基集(字典)②explicitly exploiting the self-similarities of natural images,non-local means approac...原创 2019-07-29 12:04:53 · 948 阅读 · 1 评论 -
DnCNN论文阅读笔记
文章重点:提出了一个前馈去噪卷积神经网络(DnCNN)用于图像的去噪,使用了更深的结构、残差学习算法、正则化和批量归一化等方法提高去噪性能。优势是可以处理未知噪声水平的高斯去噪。传统方法:(1)通过建模图像先验,建立去噪模型:缺点:涉及复杂的优化,耗时;模型一般非凸,并且需要手动设计参数,很难达到最优去噪性能。(2)辨别学习方法学习图像先验模型:优点:能够摆脱迭代优化过程;CSF和...原创 2019-07-19 17:27:05 · 16127 阅读 · 2 评论 -
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
超越高斯降噪器:图像降噪的深度卷积神经网络的剩余学习Abstract—Discriminative model learning for image摘要—用于图像去噪的辨别模型学习由于它的良好的去噪性能而吸引了大量的注意。denoising has been recently attracting considerable attentions due to its ...原创 2019-07-19 17:26:43 · 2857 阅读 · 0 评论