调参学习
文章平均质量分 92
打着灯笼摸黑
这个作者很懒,什么都没留下…
展开
-
可解释性(一)之CAM和Grad_CAM
可视化CAMGrad_CAM最近在学习可解释性方面的内容,主要是用cam做可解释性,因此想要系统地学习一下。参考:keras CAM和Grad-cam原理简介与实现GAP CAM Grad-CAM Grad-CAM++的解释pytorch实现所有cam衍生ECG-Grad-CAMCAM将原模型的结构修改:利用GAP(Global Average Pooling)替换掉了全连接层重新进行训练经过GAP之后,得到了最后一个卷积层每个特征图的均值,均值经过加权和得到输出某个类别的权原创 2022-01-06 17:07:55 · 4639 阅读 · 3 评论 -
机器学习之K折交叉验证
理论学习代码学习原创 2020-10-28 15:44:00 · 264 阅读 · 0 评论 -
一文看懂迁移学习:怎样用预训练模型搞定深度神经网络?
一文看懂迁移学习:怎样用预训练模型搞定深度神经网络?转载 2020-10-28 14:47:13 · 219 阅读 · 0 评论 -
Keras调参以及学习记录(一)
调参学习调参指导lambda正则化参数的大小影响参数初始化(weights initializer)策略大全二分类,多分类,多标签precision,recallkeras处理样本不平衡问题调参指导指导文章1指导文章2指导文章3lambda正则化参数的大小影响当lambda的值很小时,其惩罚项值不大,还是会出现过拟合现象,当时lambda的值逐渐调大的时候,过拟合现象的程度越来越低,但是当labmda的值超过一个阈值时,就会出现欠拟合现象,因为其惩罚项太大,导致丢失太多的特征,甚至一些比较重要的原创 2020-10-14 13:06:46 · 542 阅读 · 0 评论