
心电图分类
文章平均质量分 80
打着灯笼摸黑
这个作者很懒,什么都没留下…
展开
-
论文阅读(10)---用于皮肤病鉴别诊断的深度系统
基于深度学习系统的皮肤病分类诊断原创 2021-12-19 14:26:09 · 1741 阅读 · 0 评论 -
论文阅读(9)---基于Transformer的多模态CNN心电图心律失常分类
Multi-module Recurrent Convolutional Neural Network with Transformer Encoder for ECG Arrhythmia Classification原创 2021-10-28 16:41:55 · 7838 阅读 · 7 评论 -
多标签分类的Focal loss设计
多标签分类中存在类别不平衡的问题,想要尝试用focalloss损失函数,但是网上很少有多标签分类的损失函数设计,终于在kaggle上别人做的keras下的focalloss中举例了多标签问题:Focalloss for Keras代码和例子如下:Focal loss主要思想是这样:在数据集中,很自然的有些样本是很容易分类的,而有些是比较难分类的。在训练过程中,这些容易分类的样本的准确率可以达到99%,而那些难分类的样本的准确率则很差。问题就在于,那些容易分类的样本仍然在贡献着loss,那我们为什么要给原创 2021-09-09 17:41:28 · 4934 阅读 · 3 评论 -
心电图分类(一维数组)实现类激活图CAM可视化
最近希望通过观察特征的重要性进行模型分析,通过下面这篇文章了解了神经网络当中存在一些可视化操作,Keras实现卷积神经网络(CNN)可视化,包括有:主要的四种可视化模式:卷积核输出的可视化,即可视化卷积操作后的结果,帮助理解卷积核的作用。卷积核的可视化,对卷积核本身进行可视化,对卷积核学习到的行为进行解释。类激活图可视化,通过热度图,了解图像分类问题中图像哪些部分起到了关键作用,同时可以定位图像中物体的位置。特征可视化,与第一种方法类似,但是输出的不再是卷积层的激活值,而是使用反卷积与反池化来可原创 2021-09-08 16:20:50 · 3293 阅读 · 9 评论 -
论文阅读笔记(8-3)---A Study on Threshold Selection for Multi-label Classification
A Study on Threshold Selection for Multi-label Classification第五节和第六节原创 2021-07-24 20:47:05 · 202 阅读 · 0 评论 -
论文阅读笔记(8-1)---A Study on Threshold Selection for Multi-label Classification
多标签分类在文本分类、多媒体检索以及很多其他领域都很有用,常用的多标签方法是二进制法,它为每个标签都构造了一个决策函数。在某些应用中,调整二值化方法的决策函数的阈值可以显著提高算法的性能,但这方面的研究还很少。本研究对阈值的选取进行了详细的研究。原创 2021-07-21 17:51:37 · 437 阅读 · 0 评论 -
论文阅读笔记(7-1)---Supervised Contrastive Learning
原文链接B站讲解视频研究背景交叉熵损失函数是分类模型监督学习中应用最广泛的损失函数,但是它具有对噪声标签缺乏鲁棒性、边界性差等特点,泛化能力较差。研究成果提出了一个新的扩展对比损失函数,对于每一个锚允许有多个正样本,从而适应对比学习的全监督设置。从分析和经验上,我们证明了所提出方法的性能是最优的。实验结果表明提出的损失函数为许多数据集提供了一致的top1精度提升。它对自然干扰的抵抗力也更强。我们用解析的方法证明了损失函数的梯度有助于从硬正和硬负中学习。我们的经验表明,我们的损失是敏感度原创 2021-06-29 22:23:55 · 1446 阅读 · 2 评论 -
论文阅读笔记(6)---SimCLR
SimCLR算法思想和模型框架的介绍原创 2021-06-29 17:26:55 · 1286 阅读 · 3 评论 -
ECG一维信号去噪方法 python实现总结
对于心电信号的预处理第一步一般都是去噪处理,但是很多论文对于这一步都只是简单带过,为了复现论文所述方法,我感觉走了很多弯路,这里总结一下现在有做出来的一些方法,包括有中值滤波,FIR滤波,butter滤波和小波滤波。原创 2021-04-15 17:21:52 · 13094 阅读 · 14 评论 -
论文阅读笔记(5-1)---Stage-wise Training: An Improved Feature Learning Strategy for Deep Models
分阶段学习DefinitionStage-wise Information EvolutionExperimentsDefinition分阶段的培训框架是将训练数据的信息逐渐呈现给网络。在训练早期,网络只能访问一部分数据,特别是数据的粗尺度特性,使得网络在粗尺度上提取特征,然后网络学习更精细的信息,并且从一千的阶段学习特征提取器从而获得更好的预测。也就是说,每个阶段提取的特征都是下一阶段特征提取的先决条件。神经网络的训练是一个基于梯度的优化过程。这种训练策略通常存在梯度扩散问题,随着网络深度的增加,原创 2021-04-11 17:18:07 · 604 阅读 · 0 评论 -
论文阅读笔记(4-2)---吴恩达DNN算法分析和仿真实现
Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms吴恩达DNN算法分析和仿真实现原创 2021-03-03 20:50:24 · 1320 阅读 · 7 评论 -
论文阅读笔记(4-1)---基于深度神经网络的动态心电图心律不齐检测与分类
Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network吴恩达2019心律失常分类论文,使用DNN证明了端到端的深度学习方法可以对来自单导联心电图的各种明显的心律不齐进行分类,具有与心脏病专家类似的高诊断性能。原创 2021-03-02 16:10:28 · 2710 阅读 · 2 评论 -
人工智能和常规诊断标准对使用心电图检测左心室肥大的性能的比较
人工智能和常规诊断标准对使用心电图检测左心室肥大的性能的比较左心室肥大可以通过心电图、超声心动图、左心室造影和磁共振成像来检测。在这些方法中,超声心动图是准确的,被认为是诊断LVH的精标准。然而,超声心动图的成本和设备问题使其难以作为筛查工具。心电图是高血压患者的一项基本检查,因为它成本低,可以提供心律失常、缺血性心脏病和LVH等信息。它是一种有用的LVH筛查测试,广泛使用计算机解释心电图;在心电图机的支持下,它可以为非心脏病专家提供心电图解释信息。然而,尽管提出了许多不同的标准,心电图识别左室肥厚的准原创 2021-02-06 16:24:04 · 421 阅读 · 0 评论 -
论文阅读笔记(3)---基于深度学习的节律异常或传导阻滞多标签心电图自动诊断
这是第一次使用深度学习方法系统地研究着几乎所有类型的由心律和传导功能障碍引起的心律失常,从而形成基于人工智能的端到端的多标签心电图诊断模型。原创 2021-02-02 15:29:56 · 1294 阅读 · 2 评论 -
论文阅读笔记(2-2)---A Review Study for Electrocardiogram Signal Classification
本文的主要目的是研究和综述近年来应用的分类方法,如人工神经网络、卷积神经网络(CNN)、离散小波变换、支持向量机(SVM)和K近邻等。在分类方法、特征提取技术、数据集、贡献率等方面进行了比较。本节介绍kNN,SVM和DWT。原创 2021-01-15 22:16:02 · 1342 阅读 · 3 评论 -
论文阅读笔记(2-1)---A Review Study for Electrocardiogram Signal Classification
本文的主要目的是研究和综述近年来应用的分类方法,如人工神经网络、卷积神经网络(CNN)、离散小波变换、支持向量机(SVM)和K近邻等。在分类方法、特征提取技术、数据集、贡献率等方面进行了比较。本节介绍ANN和CNN。原创 2021-01-14 17:23:18 · 1130 阅读 · 0 评论 -
论文阅读笔记(1)---Classification of ECG signals using Machine Learning Techniques
本文详细介绍了心电分类中的各种问题、可用于心电数据的数据库、可用于去噪的各种预处理技术、可用于心电数据分类的各种分类器以及评价分类器精度的性能指标。原创 2021-01-13 16:48:58 · 3575 阅读 · 3 评论