TV去噪的理解

最近本来在研究TV去噪效果的改进,但是由于自己之前对于TV去噪方法学习太浅,所以理解出了很大的问题,这里想总结一下:
首先是TV去噪的原理,我自己觉得比较好理解的这篇文章是:
从欧拉-拉格朗日方程到理论力学和全变分约束降噪
这篇文章首先证明了对于泛函求极值需要满足的条件是:
在这里插入图片描述
得到高维函数的欧拉-拉格朗日方程式:
在这里插入图片描述TV去噪通常使用的是L1范数
在这里插入图片描述

在解决问题的过程中,我们同时希望去噪后的图像与原图像的差距不会特别大(图像不失真),因此,在求解这个梯度极小值时,加了一个保真项,结果变成:

在这里插入图片描述
后一项为泛函的保真项,λ是松弛因子,调节保真项与梯度的占比,泛函的核
在这里插入图片描述
泛函取极值的必要条件为满足欧拉方程
在这里插入图片描述
在这里插入图片描述

欧拉方程可化简为

在这里插入图片描述
关于TV的作用我主要是从这篇文章理解的:
全变分图像去噪的研究
在图像边缘处,|▽u|越大,1/|▽u|越小,u越趋近于u0,保留了边缘;在平滑区域,|▽u|越大,因此在图像平滑区域能较好地去噪了。

如何理解TV去噪产生的阶梯效应呢?
TV的L1范数的作用主要是稀疏

在这里插入图片描述
这是通过L1范数正则项实现的,与其让每一点的梯度都是常数值,不如出现很多0和一个非0值,这也就出现了阶梯效应,但是也保证了边缘。通过调节λ的值,可以在保护边缘和平滑之间进行调节。λ=0时,会过于平滑,为使值达到最小,就让|▽u|尽可能小,所以迭代到最后,可能会得到边界都被模糊掉了的图片,像这样:
在这里插入图片描述
但是当λ越大,边界保留越好。

继续分析TV算法:
通过梯度下降法:
在这里插入图片描述

利用有限差分求数值解
在这里插入图片描述

其中为学习率或步长,对二维离散信号(图像),差分形式如下
在这里插入图片描述

参考资源链接:[PJSIP开发指南中文版:从入门到进阶](https://wenku.csdn.net/doc/6m5y9ai4ff?utm_source=wenku_answer2doc_content) 在PJSIP开发中,创建端点并处理SIP消息是构建VoIP应用的基础。要实现这一功能,首先需要了解PJSIP的端点(Endpoint)概念,它是一个抽象的通信实体,可以执行注册、注销、呼叫处理等操作。端点的创建和配置是通过PJSIP库提供的API完成的,主要包括以下几个步骤: 1. 初始化PJSIP库,这通常包括加载配置文件、初始化网络层等。 2. 创建端点配置对象,可以通过pjsua2库中的 EndpointConfig 类进行配置,例如设置传输类型、语音编解码器、STUN服务器等。 3. 创建端点对象,使用Endpoint类,并传入之前创建的配置对象。 4. 初始化端点,调用endpoint对象的init()方法,让端点进行初始化。 5. 注册端点到SIP服务器,通过调用endpoint对象的createAccount()方法,并传入必要的SIP账户信息。 6. 发送和接收SIP消息,可以使用endpoint对象的makeCall()方法发起呼叫,并通过onCallState()等回调函数来处理呼叫状态和SIP消息。 以下是创建端点并进行SIP消息处理的示例代码(代码、解释、mermaid流程图、扩展内容,此处略)。 通过上述步骤,你可以完成一个基本的SIP端点创建和消息处理。为了深入理解PJSIP端点的更多高级配置和消息处理机制,建议参考《PJSIP开发指南中文版:从入门到进阶》。本书详细讲解了PJSIP的核心概念和组件,以及端点配置、信令处理等关键技术点,对于希望在PJSIP应用开发中更进一步的读者来说,是一本不可多得的实战手册。 参考资源链接:[PJSIP开发指南中文版:从入门到进阶](https://wenku.csdn.net/doc/6m5y9ai4ff?utm_source=wenku_answer2doc_content)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值