Channel Capacity 2: Channel Coding Theorem

本文介绍了信道编码定理的基本概念,包括预处理、联合典型序列、信道编码定理、带有反馈的信道和源-信道分离。讨论了在信息理论中,如何通过联合典型序列进行解码,并证明了信道容量与操作容量相等,可以实现任意小的错误概率。此外,还探讨了反馈信道的容量和源-信道分离定理。
摘要由CSDN通过智能技术生成

Reference:

Elements of Information Theory, 2nd Edition

Slides of EE4560, TUD

Preliminaries

We analyze a communication system as shown in Figure 7.8.

在这里插入图片描述

  • W W W: message drawn from the index set { 1 , 2 , ⋯   , M } \{1,2,\cdots,M\} { 1,2,,M}
  • X n = f ( W ) X^n=f(W) Xn=f(W): transmitted sequence, consisting of n n n symbols from the channel input alphabet X \mathcal X X
  • Y n ∼ p ( y n ∣ x n ) Y^n\sim p(y^n|x^n) Ynp(ynxn): received sequence, consisting of n n n symbols from the channel output alphabet Y \mathcal Y Y
  • W ^ = g ( Y n ) \hat W=g(Y^n) W^=g(Yn): message from the index set { 1 , 2 , ⋯   , M } \{1,2,\cdots,M\} { 1,2,,M}; decoding error in case W ^ ≠ W \hat W \neq W W^=W

Definition 1 (Code):

An ( M , n ) (M,n) (M,n) code for the channel ( X , p ( y ∣ x ) , Y ) (\mathcal X,p(y|x),\mathcal Y) (X,p(yx),Y) consists of

  • An index set { 1 , 2 , ⋯   , M } \{1,2,\cdots,M\} { 1,2,,M}
  • An encoding function f : { 1 , 2 , ⋯   , M } → X n f:\{1,2,\cdots,M\}\to \mathcal X^n f:{ 1,2,,M}Xn, yielding codewords x n ( 1 ) , ⋯   , x n ( M ) x^n(1),\cdots, x^n(M) xn(1),,xn(M). The set of codewords is called the codebook
  • A decoding function g : Y n → { 1 , 2 , ⋯   , M } g:\mathcal Y^n\to \{1,2,\cdots,M\} g:Yn{ 1,2,,M}

Example [slides 5-7]

Definition 2 (Conditional Probability of Error):

Conditional probability of error given that index i i i was sent:
λ i = Pr ⁡ ( g ( Y n ) ≠ i ∣ X n = x n ( i ) ) = ∑ y n p ( y n ∣ x n ( i ) ) I ( g ( y n ) ≠ i ) (1) \begin{aligned} \lambda_i&=\Pr (g(Y^n)\ne i|X^n=x^n(i))=\sum_{y^n}p(y^n|x^n(i))I(g(y^n)\ne i) \end{aligned}\tag{1} λi=Pr(g(Yn)=iXn=xn(i))=ynp(ynxn(i))I(g(yn)=i)(1)
where I ( ⋅ ) I(\cdot) I() is the indicator function. ( x n x^n xn and y n y^n yn are the possible realizations of X n X^n Xn and Y n Y^n Yn)

Maximal probability of error:
λ ( n ) = max ⁡ i ∈ { 1 , 2 , ⋯   , M } λ i (2) \lambda^{(n)}=\max _{i\in \{1,2,\cdots,M\}} \lambda_i \tag{2} λ(n)=i{ 1,2,,M}maxλi(2)
Average probability of error:

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值