MA&ALA3.9_初等矩阵和等价 (Elementary Matrices and Equivalence)

本文探讨了矩阵代数中的初等矩阵及其在行/列变换中的作用。初等矩阵分为交换、缩放和加法类型,这些矩阵的逆仍然是同类型的。矩阵通过基本行/列变换可以表示为初等矩阵的乘积,从而证明非奇异矩阵可分解为初等矩阵。矩阵等价定义为通过行和列变换相互转换,且等价性具有交换性和传递性。等价性可用于简化矩阵至最简行阶梯形,并且转置不影响矩阵的秩。
摘要由CSDN通过智能技术生成

注:本文是对Matrix Analysis and Applied Linear Algebra一书3.9节Elementary Matrices and Equivalence的学习笔记

将复杂的对象分解成几个基本对象的组合是一种常用的处理数学问题的方式,比如因式分解。在矩阵代数中,类似地,一个一般的矩阵也可能可以被分解成几个初等矩阵(Elementary Matrices)的乘积。

Matrices of the form I − u v T \mathbf I − \mathbf {uv}^T IuvT, where u \mathbf u u and v \mathbf v v are n × 1 n \times 1 n×1 columns such that v T u ≠ 1 \mathbf v^T \mathbf u \ne 1 vTu=1 are called elementary matrices, and we know from Sherman–Morrison Formula that all such matrices are nonsingular and ( I − u v T ) − 1 = I − u v T v T u − 1 . (\mathbf I − \mathbf {uv}^T)^{−1} = \mathbf I − \frac{\mathbf {uv}^T}{\mathbf v^T \mathbf u − 1} . (IuvT)1=IvTu1uvT. Notice that inverses of elementary matrices are elementary matrices.

我们特别关注和基本行/列变换有关的的初等矩阵。定义:

  • Type  I \text{Type }\rm I Type I: 交换第 i , j i,j i,j行/列
  • Type  I I \text{Type }\rm {II} Type II: 将第 i i i行/列乘以 α ( α ≠ 0 ) \alpha(\alpha \ne 0) α(α=0)
  • Type  I I I \text{Type }\rm {III} Type III: 将第 i i i行/列的若干倍加到第 j j j行/列

这三种变换对应的初等矩阵,分别是 E 1 = I − u u T , u = e j − e i E 2 = I − ( 1 − α ) e i e i T E 3 = I + α e j e i T \begin{aligned}\mathbf E_1&=\mathbf I-\mathbf u \mathbf u^T, \mathbf u=\mathbf e_j-\mathbf e_i \\ \mathbf E_2&=\mathbf I-(1-\alpha) \mathbf e_i \mathbf e_i^T \\ \mathbf E_3&=\mathbf I+\alpha \mathbf e_j \mathbf e_i^T \end{aligned} E1E2E3=IuuT,u=ejei=I(1α)eieiT=I+αejeiT可以验证它们满足这样的性质:

  • When used as a left-hand multiplier, an elementary matrix of Type I, II, or III executes the corresponding row operation.
  • When used as a right-hand multiplier, an elementary matrix of Type I, II, or III executes the corresponding column operation.

比如 Type  I \text{Type }\rm I Type I: E 1 A = ( I − ( e j − e i ) ( e j − e i ) T ) A = A − ( e j e j T + e i e i T − e i e j T − e j e i T ) A = A − ( e j A j ∗ + e i A i ∗ − e i A j ∗ − e j A i ∗ ) = A − ( [ 0 ⋮ 0 ⋮ A j ∗ ⋮ 0 ] + [ 0 ⋮ A i ∗ ⋮ 0 ⋮ 0 ] − [ 0 ⋮ A j ∗ ⋮ 0 ⋮ 0 ] − [ 0 ⋮ 0 ⋮ A i ∗ ⋮ 0 ] ) , A E 1 = ( I − ( e j − e i ) ( e j − e i ) T ) A = A − A ( e j e j T + e i e i T − e i e j T − e j e i T ) = A − ( A ∗ j e j T + A ∗ i e i T − A ∗ j e i T − A ∗ i e j T ) = A − ( [ 0 ⋮ 0 ⋮ A ∗ j T ⋮ 0 ] T + [ 0 ⋮ A ∗ i T ⋮ 0 ⋮ 0 ] T − [ 0 ⋮ A ∗ j T ⋮ 0 ⋮ 0 ] T − [ 0 ⋮ 0 ⋮ A ∗ i T ⋮ 0 ] T ) \begin{aligned}\mathbf E_1 \mathbf A &=(\mathbf I-(\mathbf e_j-\mathbf e_i)(\mathbf e_j-\mathbf e_i)^T)\mathbf A\\&=\mathbf A-(\mathbf e_j \mathbf e_j^T+\mathbf e_i \mathbf e_i^T-\mathbf e_i \mathbf e_j^T-\mathbf e_j \mathbf e_i^T)\mathbf A\\&=\mathbf A-(\mathbf e_j \mathbf A_{j*}+\mathbf e_i \mathbf A_{i*}-\mathbf e_i \mathbf A_{j*}-\mathbf e_j \mathbf A_{i*}) \\ &=\mathbf A-\left(\left[\begin{matrix}\mathbf 0 \\ \vdots \\ \mathbf 0 \\ \vdots \\ \mathbf A_{j*} \\ \vdots \\ \mathbf 0 \end{matrix}\right]+\left[\begin{matrix}\mathbf 0 \\ \vdots \\ \mathbf A_{i*} \\ \vdots \\ \mathbf 0\\ \vdots \\ \mathbf 0 \end{matrix}\right]-\left[\begin{matrix}\mathbf 0 \\ \vdots \\ \mathbf A_{j*} \\ \vdots \\ \mathbf 0 \\ \vdots \\ \mathbf 0 \end{matrix}\right]-\left[\begin{matrix}\mathbf 0 \\ \vdots \\ \mathbf 0 \\ \vdots \\ \mathbf A_{i*} \\ \vdots \\ \mathbf 0 \end{matrix}\right] \right),\\ \mathbf A \mathbf E_1 &=(\mathbf I-(\mathbf e_j-\mathbf e_i)(\mathbf e_j-\mathbf e_i)^T)\mathbf A\\&=\mathbf A-\mathbf A(\mathbf e_j \mathbf e_j^T+\mathbf e_i \mathbf e_i^T-\mathbf e_i \mathbf e_j^T-\mathbf e_j \mathbf e_i^T)\\&=\mathbf A-(\mathbf A_{*j} \mathbf e_j ^T+ \mathbf A_{*i} \mathbf e_i^T- \mathbf A_{*j} \mathbf e_i^T- \mathbf A_{*i} \mathbf e_j^T) \\ &=\mathbf A-\left(\left[\begin{matrix}\mathbf 0 \\ \vdots \\ \mathbf 0 \\ \vdots \\ \mathbf A_{*j}^T \\ \vdots \\ \mathbf 0 \end{matrix}\right]^T+\left[\begin{matrix}\mathbf 0 \\ \vdots \\ \mathbf A_{*i}^T \\ \vdots \\ \mathbf 0\\ \vdots \\ \mathbf 0 \end{matrix}\right]^T-\left[\begin{matrix}\mathbf 0 \\ \vdots \\ \mathbf A_{*j}^T \\ \vdots \\ \mathbf 0 \\ \vdots \\ \mathbf 0 \end{matrix}\right]^T-\left[\begin{matrix}\mathbf 0 \\ \vdots \\ \mathbf 0 \\ \vdots \\ \mathbf A_{*i}^T \\ \vdots \\ \mathbf 0 \end{matrix}\right]^T \right)\end{aligned} E1AAE1=(I(ejei)(ejei)T)A=A(ejejT+eieiTeiejTejeiT)A=A(ejAj+eiAieiAjejAi)=A00Aj0+0Ai000Aj0000Ai0,=(I(ejei)(ejei)T)A=AA(ejejT+eieiTeiejTejeiT)=A(AjejT+AieiTAjeiTAiejT)=A00AjT0T+0AiT00T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值