简介
paper:Deep Learning for Visual Tracking: A Comprehensive Survey
github:MMarvasti/Deep-Learning-for-Visual-Tracking-Survey
这篇论文是之前看的,主要是对深度学习下跟踪算法的一个综述。
主要内容
由于是综述,内容涵盖较多,这里截取部分我感兴趣的内容。
首先,作者根据多个方面对跟踪算法进行了一个分类,如下图所示:
然后,论文中还介绍了一些在单目标跟踪中常用的评价指标:
- Center Location error(CLE): The CLE or precision metric is defined as the average Euclidean distance between the precise ground-truth locations of the target and estimated locations by a visual tracker(简单说就是预测位置与标签的欧式距离误差)
- Accuracy: The accuracy is then calculated by the average overlap scores (AOS) during the tracking when a visual tracker’s estimations have overlap with the ground-truth ones(即average IOU)
- Robustness/failure score:The robustness or failure score is defined as the number of required reinitializations when a tracker loses (or drifts) the target during the tracking task. The failure is detected when the overlap score drops to zero.(Robustness是跟踪器跟踪失败后重新初始化的次数,failure是失败总数,当IOU score为0时判定为failure)
- Expected average overlap(EAO):the EAO score is calculated as Φ ^ N s = ⟨ 1 N s ∑ i = 1 N s Φ i ⟩ \widehat{\Phi}_{N_{s}}=\left\langle\frac{1}{N_{s}} \sum_{i=1}^{N_{s}} \Phi_{i}\right\rangle Φ Ns=⟨Ns1∑i=1NsΦi⟩,where Φ i \Phi_{i} Φi is defined as the average of perframe overlaps until the end of sequences, even if failure leads to zero overlaps.
论文中还列举出了近些年SOTA的跟踪器:
(PS:”革命尚未成功,同志仍需努力“,还有好多论文要看o(╥﹏╥)o)
小结
大佬太多了!(溜~)