279. Perfect Squares

Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.

Example 1:

Input: n = 12
Output: 3 
Explanation: 12 = 4 + 4 + 4.

Example 2:

Input: n = 13
Output: 2
Explanation: 13 = 4 + 9.

最近复习考试,好几天没刷题了。

这道题从LeetCode讨论区学到了不少,明白了回溯法和动态规划的关系,也复习了一下bfs

首先,解法一(bfs 广度优先搜索):

 

每次处理递归树的一层,代码如下:

    public int numSquares(int n) {
        List<Integer> squares = getSquares(n);
        
        Queue<Integer> queue = new LinkedList<>();
        queue.offer(n);
        boolean[] marked = new boolean[n+1];
        //marked[n] = true;
        int depth = 0;
        while(!queue.isEmpty()){
            depth++;
            int size = queue.size();
            for(int i = 0;i<size;i++){
                int prev = queue.poll();
                for(int square:squares){
                    if(prev-square==0) return depth;
                    else if(prev-square>0 && !marked[prev-square]){
                        queue.add(prev-square);
                        marked[prev-square] = true;
                    }
                }
            }
        }
        return -1;
    }
    
    
    private List<Integer> getSquares(int n){
        List<Integer> res = new ArrayList<>();
        int start = 1;
        int add = 3;
        while(start<=n){
            res.add(start);
            start += add;
            add += 2;
        }
        return res;
    }

上面这种解法的时间复杂度为O(n*n)  至于怎么证明我也不会

解法二:

动态规划。这里重点是递归关系式   dp[n] = Min{ dp[n - j*j] + 1 }

那么这个关系式是怎么来的呢?其实很简单,看看上面的bfs解法中的图。

只需要用15和16两个例子,自然就会明白了。

    //dp O(n*sqrt(n)~O(n*logn)
    //递推关系式 dp[n] = Min{ dp[n - j*j] + 1 } 其中 n - j*j >=0 且 j >= 1
    public int numSquares(int n) {
        int[] dp = new int[n+1];
        //dp[0] = 0;
        for(int i = 1;i<n+1;i++){
            int imin = Integer.MAX_VALUE;
            int j = 1;
            while(i-j*j>=0){
                if(dp[i-j*j]+1<imin){
                    imin = dp[i-j*j]+1;
                }
                j++;
            }
            dp[i] = imin;
        }
        return dp[n];
    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值