P1390 公约数的和 (莫比乌斯反演+欧拉函数)

题目链接:点击这里

写在前面:

先在这里记录一下莫比乌斯函数的三条性质和一个式子:
1.对于给定的正整数 n n n 有:
∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d|n}μ(d)=[n=1] dnμ(d)=[n=1]
2.
∑ d ∣ n μ ( n d ) d = φ ( n ) \sum_{d|n}μ(\frac nd)d=φ(n) dnμ(dn)d=φ(n)
3.对于给定的正整数 n n n 有:
∑ d ∣ n μ ( d ) d = φ ( n ) n \sum_{d|n} \frac {μ(d)} d= \frac {φ(n)} n dndμ(d)=nφ(n)
4.
∑ i = 1 n ∑ j = 1 n [ gcd ⁡ ( i , j ) = 1 ] \sum_{i=1}^n\sum_{j=1}^n[\gcd(i,j)=1] i=1nj=1n[gcd(i,j)=1]
= ∑ i = 1 n ∑ j = 1 n ∑ d ∣ gcd ⁡ ( i , j ) μ ( d ) =\sum_{i=1}^n\sum_{j=1}^n\sum_{d|\gcd(i,j)}μ(d) =i=1nj=1ndgcd(i,j)μ(d)
= ∑ d = 1 n μ ( d ) ∑ d ∣ i ∑ d ∣ j =\sum_{d=1}^nμ(d)\sum_{d|i}\sum_{d|j} =d=1nμ(d)didj
= ∑ d = 1 n μ ( d ) ⌊ n d ⌋ ⌊ n d ⌋ =\sum_{d=1}^nμ(d) \lfloor \frac nd \rfloor \lfloor \frac nd \rfloor =d=1nμ(d)dndn
题目大意:

给定 n n n ,求
∑ i = 1 n ∑ j = i + 1 n gcd ⁡ ( i , j ) \sum_{i=1}^n\sum_{j=i+1}^n\gcd(i,j) i=1nj=i+1ngcd(i,j)
题目分析:
∑ i = 1 n ∑ j = i + 1 n gcd ⁡ ( i , j ) \sum_{i=1}^n\sum_{j=i+1}^n\gcd(i,j) i=1nj=i+1ngcd(i,j)
= ∑ i = 1 n ∑ j = 1 n gcd ⁡ ( i , j ) − ∑ i = 1 n gcd ⁡ ( i , i ) 2 =\frac{\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j)-\sum_{i=1}^n\gcd(i,i)}2 =2i=1nj=1ngcd(i,j)i=1ngcd(i,i)
其中 ∑ i = 1 n gcd ⁡ ( i , i ) = n ( n + 1 ) 2 \sum_{i=1}^n\gcd(i,i)= \frac{n(n+1)} 2 i=1ngcd(i,i)=2n(n+1)
∑ i = 1 n ∑ j = 1 n gcd ⁡ ( i , j ) \sum_{i=1}^n\sum_{j=1}^n\gcd(i,j) i=1nj=1ngcd(i,j)
= ∑ k = 1 n k ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) = k ] =\sum_{k=1}^nk\sum_{i=1}^n\sum_{j=1}^n[gcd(i,j)=k] =k=1nki=1nj=1n[gcd(i,j)=k]
= ∑ k = 1 n k ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ n k ⌋ ∑ d ∣ gcd ⁡ ( i , j ) μ ( d ) =\sum_{k=1}^nk\sum_{i=1}^{\lfloor \frac nk \rfloor}\sum_{j=1}^{\lfloor \frac nk \rfloor}\sum_{d|\gcd(i,j)}μ(d) =k=1nki=1knj=1kndgcd(i,j)μ(d)
= ∑ k = 1 n k ∑ d = 1 n μ ( d ) ⌊ n k d ⌋ ⌊ n k d ⌋ =\sum_{k=1}^nk \sum_{d=1}^nμ(d) \lfloor \frac n {kd} \rfloor \lfloor \frac n {kd} \rfloor =k=1nkd=1nμ(d)kdnkdn
x = k d x=kd x=kd
= ∑ x = 1 n ⌊ n x ⌋ ⌊ n x ⌋ ∑ k ∣ x k μ ( x k ) =\sum_{x=1}^n \lfloor \frac nx \rfloor\lfloor \frac nx \rfloor \sum_{k|x}kμ(\frac xk) =x=1nxnxnkxkμ(kx)
利用性质2:
= ∑ x = 1 n ⌊ n x ⌋ ⌊ n x ⌋ φ ( x ) =\sum_{x=1}^n \lfloor \frac nx \rfloor\lfloor \frac nx \rfloor φ(x) =x=1nxnxnφ(x)
此时就可以通过整除分块求 ⌊ n x ⌋ \lfloor \frac nx \rfloor xn ,线筛求 φ ( x ) φ(x) φ(x) 及其前缀和来求出这个式子的值了
时间复杂度: O ( n ) O(n) O(n)

具体细节见代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#define ll long long
#define int long long
#define inf 0x3f3f3f3f
using namespace std;
int read()
{
	int res = 0,flag = 1;
	char ch = getchar();
	while(ch<'0' || ch>'9')
	{
		if(ch == '-') flag = -1;
		ch = getchar();
	}
	while(ch>='0' && ch<='9')
	{
		res = (res<<3)+(res<<1)+(ch^48);//res*10+ch-'0';
		ch = getchar();
	}
	return res*flag;
}
const int maxn = 2e6+5;
const int mod = 1e9+7;
const double pi = acos(-1);
const double eps = 1e-8;
int cnt,pri[maxn],mu[maxn],phi[maxn],sum[maxn];
bool vis[maxn];
void get_mu()
{
	mu[1] = phi[1] = sum[1] = vis[1] = 1;
	for(int i = 2;i < maxn;i++)
	{
		if(!vis[i])
		{
			pri[++cnt] = i;
			mu[i] = -1;
			phi[i] = i-1;
		}
		for(int j = 1;j <= cnt && i*pri[j] < maxn;j++)
		{
			vis[i*pri[j]] = true;
			if(i%pri[j] == 0) 
			{
				phi[i*pri[j]] = phi[i]*pri[j];
				break;
			}
			else {
				mu[i*pri[j]] -= mu[i];
				phi[i*pri[j]] = phi[i]*(pri[j]-1);
			}
		}
		sum[i] = sum[i-1]+phi[i];
	}
}
signed main()
{
	get_mu();
	int n = read();
	ll ans = 0;
	for(int l = 1,r;l <= n;l = r+1)
	{
		r = n/(n/l);
		ans += 1ll*(sum[r]-sum[l-1])*(n/l)*(n/l);
	}
	printf("%lld\n",(ans-1ll*n*(n+1)/2)/2);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值