洛谷P1390 公约数的和

本文介绍了一种使用数论技巧求解特定数学问题的方法。通过枚举和递推公式,我们能够有效地计算∑∑gcd(i,j)从i=1到n,j=1到n的值。文章提供了一个O(nlogn)复杂度的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

f[d]=∑∑gcd⁡(i,j)=d,F[d]=∑∑d∣gcd⁡(i,j)f[d]=\sum\sum \gcd(i,j)=d,F[d]=\sum\sum d|\gcd(i,j)f[d]=gcd(i,j)=d,F[d]=dgcd(i,j)
不难看出 F[d]=(n/d)2F[d]=(n/d)^2F[d]=(n/d)2
那么 f[d]=F[d]−∑f[kd]f[d]=F[d]-∑f[kd]f[d]=F[d]f[kd]

通过枚举 ddd 的方式,我们可以求出 ∑i=1n∑j=1ngcd⁡(i,j)\sum\limits_{i=1}^n\sum\limits_{j=1}^n\gcd(i,j)i=1nj=1ngcd(i,j)
然后稍作处理就是题目要求的答案了。

好像很简单的样子啊qwq
所以倒着 O(nlog⁡n)\mathcal{O(n\log n)}O(nlogn) 扫一遍就珂以了QAQ

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#define ll long long //不开ll见祖宗
using namespace std;

ll f[2000010];

int main() {
     ll n,ans=0;
     scanf("%lld",&n);
     for (int i=n; i>=1; --i) { //枚举d
     	f[i]=(n/i)*(n/i);
     	for (int j=(i<<1); j<=n; j+=i) { //枚举kd
     		f[i]-=f[j];
     	}
     	ans+=(ll)(f[i]*i);
     }
     ans=ans-n*(n+1)/2; //除去gcd(i,i)形式的结果
     ans/=2;  //除去重复部分
     printf("%lld\n",ans);
     return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值