知识图谱小结

1.知识图谱:

人工智能的重要分支技术
结构化形式描述客观世界中概念、实体及其之间的关系
将互联网信息表达成接近人认知世界的形式,提供更好地组织、管理和理解海量信息的能力
两种:通用知识图谱、特定领域知识图谱。
多关系图(multi-relation gragh),通常包含类型的边和节点
知识的承载体
实体:
具有可区别性且独立存在的某种事物。如某一个人、某一座城市、某一种植物、某一件商品等等。实体是知识图谱中的最基本元素,不同的实体间存在不同的关系。
概念:
具有同种特性的实体构成的集合,如国家、民族、书籍、电脑等。
属性 :
则用于区分概念的特征,不同概念具有不同的属性。不同的属性值类型对应于不同类型属性的边。如果属性值对应的是概念或实体,则属性描述两个实体之间的关系,称为对象属性;如果属性值是具体的数值,则称为数据属性。

  1. 三大典型应用

语义搜索

基于关键词的搜索技术在知识图谱的支持下上升到基于实体和关系的检索,称之为语义搜索。
准确地捕捉用户搜索意图,
解决传统搜索中遇到的关键字语义多样性及语义消歧的难题,
实体链接实现知识与文档的混合检索
语义检索需要考虑如何解决自然语言输入带来的表达多样性问题,
同时需要解决语言中实体的歧义性问题。
直接给出满足用户搜索意图的答案,而不是包含关键词的相关网页的链接

智能问答

问答系统(Question Answering,QA)是信息服务的一种高级形式,
返回用户的不再是基于关键词匹配的相关文档排序,而是精准的自然语言形式的答案
针对用输入的自然语言理解,从知识图谱中或目标数据中给出用户问题的答案,其关键技术及难点包括准确的语义解析、正确理解用户的真实意图、以及对返回答案的评分评定以确定优先级顺序

可视化决策支持

通过提供统一的图形接口,结合可视化、推理、检索等,为用户提供信息获取的入口。
通过节点探索、路径发现、关联探寻等可视化分析技术展示公司的全方位信息。
辅助用户快速发现业务模式、
提升可视化组件的交互友好程度、
以及大规模图环境下底层算法的效率等

3.通用知识图谱

一个面向通用领域的“结构化的百科知识库”,包含了大量的现实世界中的常识性知识,覆盖面极广。
由于现实世界的知识丰富多样且极其庞杂,通用知识图谱主要强调知识的广度,通常运用百科数据进行自底向上(Top-Down)的方法进行构建,
在这里插入图片描述
国外的DBpedia使用固定的模式从维基百科中抽取信息实体,当前拥有127种语言的超过两千八百万实体以及数亿RDF三元组;
YAGO则整合维基百科与WordNet的大规模本体,拥有10种语言约459万个实体,2400万个事实。
国内的Zhishi.me从开放的百科数据中抽取结构化数据,当前已融合了包括百度百科、互动百科、中文维基三大百科的数据,拥有1000万个实体数据、一亿两千万个RDF三元组。

  1. 领域知识图谱应用

辅助各种复杂的分析应用或决策支持,在多个领域均有应用,不同领域的构建方案与应用形式则有所不同。

在这里插入图片描述
4. 把知识变成图谱一共需要花几步?

1、知识表示与建模

知识表示将现实世界中的各类知识表达成计算机可存储和计算的结构。机器必须要掌握大量的知识,特别是常识知识才能实现真正类人的智能
目前,随着nlp领域词向量等嵌入(Embedding)技术手段的出现,采用连续向量方式来表示知识的研究(TransE翻译模型、SME、SLM、NTN、MLP,以及NAM神经网络模型等)正在逐渐取代与上述以符号逻辑为基础知识表示方法相融合,成为现阶段知识表示的研究热点。
知识图谱嵌入也通常作为一种类型的先验知识辅助输入到很多深度神经网络模型中,用来约束和监督神经网络的训练过程,如下图所示。
在这里插入图片描述
以三元组为基础的较为简单实用的知识表示方法满足规模化扩展,
作为大数据分析系统的重要数据基础,帮助这些数据易于与深度学习模型集成。
随着以深度学习为代表的表示学习的发展,面向知识图谱中实体和关系的表示学习也取得了重要的进展。
知识表示学习将实体和关系表示为稠密的低维向量实现了对实体和关系的分布式表示,已经成为知识图谱语义链接预测和知识补全的重要方法
学习知识库中的实体和关系的表示。不过其中关系路径建模工作较为初步,在关系路径的可靠性计算、语义组合操作等方面还有很多细致的考察工作需要完成

2.知识获取

包括实体识别与链接、实体关系学习、以及事件知识学习。
1)实体识别与链接是知识图谱构建、知识补全与知识应用的核心技术,也是海量文本分析的核心技术,为计算机类人推理和自然语言理解提供知识基础。
实体识别是文本理解意义的基础,也就是识别文本中指定类别实体的过程,可以检测文本中的新实体,并将其加入到现有知识库中
2)实体关系识别是知识图谱自动构建和自然语言理解的基础。实体关系定义为两个或多个实体间的某种联系,用于描述客观事物之间的关联关系。
实体关系学习就是自动从文本中检测和识别出实体之间具有的某种语义关系,也称为关系抽取。
实体关系抽取分为预定义关系抽取和开放关系抽取。预定义关系抽取是指系统所抽取的关系是预先定义好的,如上下位关系、国家—首都关系等。开放式关系抽取不预先定义抽取的关系类别,由系统自动从文本中发现并抽取关系。
3)事件知识学习,就是将非结构化文本中自然语言所表达的事件以结构化的形式呈现,对于知识表示、理解、计算和应用意义重大。
事件是促使事物状态和关系改变的条件,是动态的、结构化的知识。目前已存在的知识资源(如谷歌知识图谱)所描述多是实体以及实体之间的关系,缺乏对事件知识的描述。

  1. 知识融合

可由任何机构和个人自由构建,其背后的数据来源广泛、质量参差不齐,导致它们之间存在多样性和异构性。语义集成的提出就是为了能够将不同的知识图谱融合为一个统一、一致、简洁的形式,为使用不同知识图谱的应用程序间的交互建立操作性。
常用的技术包括本体匹配(也称为本体映射)、实力匹配(也称为实体对齐、对象公指消解)以及知识融合等。
在这里插入图片描述
一个语义集成的常见流程,包括:输入、预处理、匹配、知识融合和输出5个环节
众包和主动学习等人机协作方法是目前实例匹配的研究热点。这些方法雇佣普通用户,通过付出较小的人工代价来获得丰富的先验数据,从而提高匹配模型的性能。
随着表示学习技术在诸如图像、视频、语言、自然语言处理等领域的成功,一些研究人员开始着手研究面向知识图谱的表示学习技术,将实体、关系等转换成一个低维空间中的实质向量(即分布式语义表示),并在知识图谱补全、知识库问答等应用中取得了不错的效果。
与此同时,近年来强化学习也取得了一些列进展,如何在语义集成中运用强化学习逐渐成为新的动向。
4、知识图谱查询和推理计算
知识图谱以图(Graph)的方式来展现实体、事件及其之间的关系。知识图谱存储和查询研究如何设计有效的存储模式支持对大规模图数据的有效管理,实现对知识图谱中知识高效查询。
知识推理则从给定的知识图谱推导出新的实体跟实体之间的关系,在知识计算中具有重要作用,如知识分类、知识校验、知识链接预测与知识补全等。
知识图谱推理可以分为基于符号的推理和基于统计的推理。
基于符号的推理一般基于经典逻辑(一阶谓词逻辑或者命题逻辑)或经典逻辑的变异(比如说缺省逻辑)。
基于符号的推理可以从一个已有的知识图谱推理出新的实体间关系,可用于建立新知识或者对知识图谱进行逻辑的冲突检测。
基于统计的方法一般指关系机器学习方法,即通过统计规律从知识图谱中学习到新的实体间关系。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值