Numpy小记

numpy

基本信息

  • .size返回元素总数.dtype返回类型,nbytes占用内存
  • numpy.ndim返回数组的维度
  • 注解:[1,2,3]是一维,[[1,2,3],[1,2,3]]是二维,[[[1,2,3],[1,2,3]],[[4,5,6],[7,8,9]]]是三维
  • numpy.shape返回各位维度大小的元组
  • shape分别为(3,),(2,3),(2,2,3) 例如最后一个等效成[A,B],A又是2*3的数组,所以shape=(2,2,3)
  • 相乘或者相加会自动对其每个元素进行操作,而不是和列表一样扩展长度
  • np.sin(),np.exp(),np.log(),np.sum(),作用像名字一样
  • 对其元素的操作类似于列表
  • np对dtype类型要求严格,你定义的整型数组参数就会自动变为整型
  • num = np.array([[1, 2, 3],[1, 2, 3]]), dtype=‘float64’),设置类型,赋值num[0,0]或者num[0][0]
  • num[0]=[1,2,3]
  • num = np.arange(0, 25).reshape(5, 5) 这是创建一个0-25的数组,再把形状转成5*5
  • num < 3 -> 输出一个元素为bool的矩阵 [[True, True, False],[True, True, False]]
  • 想知道哪些元素小于8同时大于3 -> (num<8)&(num>3) (& | ~ ^)都能用
  • num[num<3] = 10 -> [[10, 10, 3],[10, 10, 3]] ,同理num[(num<8)&(num>3)]也能得到你想要的
  • 花式索引:num[[0,1],[1,2]] ->[2,3],num[:,[1,2]] -> [[2 3] [2 3]],mask = np.array([0,1])
    print(num[mask,[1,2]]) -> [2 3]
  • 取出3的整数倍,num[num % 3 == 0] num%3会得到num的取余值,==0后会返回bool矩阵
  • 理解axis,a = np.array([[1, 2, 3],[4, 5, 6]]) ,a.sum(axis=0) ->[5,7,9],a.sum(axis=-1)->[6,15]
    axis=0就是把行给压缩到一行,axis=-1就是把列给压缩到一列,指定的轴会消失
  • 查找最大最小值,a = np.array([[1, 4, 5],[4, 5, 2]]),a.max(axis=0) -> [4 5 5] a.max(axis=1) -> [5 5]查找最大值,a.argmax(axis=0) -> [1 1 0] a.argmax(axis=1) -> [2 1]查找最大值索引,min同理,不带参数就会返回最大值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值