数论——最大公约数和最小公倍数

声明

部分代码源于《数学一本通》by东南大学出版社

定义

就是最大的那个公约数呗
我们来个稍微学术点的定义:
一般地,设 a1,a2,,ak 是k个非零的整数,如果存在一个非零整数 d ,使得d|a1,d|a2,,d|ak,那么我们就说 d a1,a2,,ak的公约数。在公约数的集合里最大的,就是最大公约数
最小公倍数就是一般地,设 a1,a2,,ak 是k个非零的整数,如果存在一个非零整数 d ,使得a1|d,a2|d,,ak|d,那么我们就说 d a1,a2,,ak的公倍数。在公约数的集合里最小的,就是最小公倍数

最大公约数

最大公约数,一般表示为 gcd() ,数学上一般表示为 () 。这是显然肯定有的,至少是1。当 gcd=1 的时候,就说明这几个数是互质的。(区别于两两互质)。
下面介绍几种计算两个数的 gcd 方法。

欧几里得算法

欧几里得算法就是我们熟悉的辗转相除法(辗转相减法的 改进)。

原理

gcd(x,y)=gcd(yx)
证明可以用同余定理来完成。

代码实现 (一行 gcd

int gcd(int x,int y){return y==0 ? x : gcd(y,x%y);}

二进制算法

这是对欧几里得的改进。
原理就是不断除去因子2来降低常数。
x=y gcd(x,y)=x ,否则:

  1. x,y 均为偶数,则 gcd(x,y)=2gcd(x/2,y/2) ;
  2. x 为奇数,y为偶数,则 gcd(x,y)=gcd(x,y/2) ;
  3. y 为奇数,x为偶数,则 gcd(x,y)=gcd(x/2,y) ;
  4. x,y 均为奇数,则 gcd(x,y)=gcd(xy,y)

二进制算法代码实现

inline int gcd(int x,int y)
{
    int i,j;
    if(x==0)return y;
    if(y==0)return x;
    for(i=0;0==(x&1);++i)x>>=1;
    for(j=0;0==(y&1);++j)y>>=1;
    if(j<i)i=j;
    while(1)
    {
        if(x<y)x^=y,y^=x,x^=y;
        if(0==(x-=y))return y<<i;
        while(0==(x&1))x>>=1;
    }
}

最小公倍数

这个没什么好说的,一般表示为 lcm() 数学上表示为 []
有一个定理需要说一下

gcd(a,b)×lcm(a,b)=a×b

gcd的一些性质

基本变化规律

  1. gcd(±a,±b)=gcd(a,b) ;
  2. gcd(a,b)=gcd(b,a) ;
  3. 对于任意整数 x gcd(a,b+ax)=gcd(a,b);

裴蜀等式

a b是不全为0的整数,则存在整数 x y使得

ax+by=gcd(a,b)
特别地,若 x=x0,y=y0 是满足上面的裴蜀等式的一对整数,则等式
a(x0+bu)+b(y0au)=gcd(a,b)(u)

表明,满足上式的 x ,y有无数多组;并且, ab>0 时,可选择 x 为正(负)数,此时y则相应的负(正)数。
我们称为等式(1)

裴蜀等式的推论

推论1

由等式(1)可以推出:
证明两个整数 a,b 互质的充分必要条件是存在整数 x,y 使得

ax+by=1

证明
事实上,条件的必要性是等式(1)的特例。反过来,若有 x,y 使得等式成立,设 gcd(a,b)=d ,则 d|a d|b ,所以 d|ax d|by ,于是 d|(ax+by) ,所以 d|1 ,所以 gcd(a,b)=1 。互质。

推论2

m|a,m|b m|gcd(a,b) ,也就是说, a b的公约数,是它们最大公约数的约数。

推论3

m>0 ,则 gcd(ma,mb)=m×gcd(a,b)

推论4

gcd(a,b)=d ,则 gcd(ad,bd)=1 。因此,由两个不互质的整数,可以自然地产生一对互质的整数。

推论5

gcd(a,m)=1,gcd(b,m)=1 ,则有 gcd(ab,m)=1 .这表示,与一个固定整数互质的整数之集关于乘法封闭。
由此可以推出:
a,b 互质,则对任意的 k>0 都有 gcd(ak,b)=1 进而对任意的 l>0 都有 gcd(ak,bl)=1

推论6

b|ac gcd(b,c)=1 ,则 b|a

推论7

设正整数 a,b 之积是一个整数的 k 次幂(2k)。若 a,b 互质,则 a,b 都是整数的 k 次幂。
这里两元的定理还可以扩展到多元。

lcm的一些性质

性质1

a,b的任何一个公倍数都是 lcm(a,b) 的倍数。

性质2

上面已经提到过了

gcd(a,b)×lcm(a,b)=|a×b|
但是对于多元的情况下,这个等式并不一定成立。但是我们有性质3:

性质3

a,b,c,,d 两两互质,则有

lcm(a,b,c,,d)=|abcd|

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值