USACO2010FEB gold ice——STL的使用

要懂的知识

pair p a i r
set s e t
map m a p
迭代器
upper_bound u p p e r _ b o u n d
lower_bound l o w e r _ b o u n d

题目

题目描述
Bessie 在一个冰封的湖面上游泳,湖面可以表示为二维的平面,坐标范围是-1,000,000,000..1,000,000,000。湖面上的N(1 <= N <= 20,000)个位置有石块(编号分别为1到N),其它位置是冰面。由于Bessie滑冰技术不够好,她通过推动自己旁边的石块,依靠反作用力向某一个方向前进,在碰到一个新的石块之前,Bessie是不会停下来的。(当然,最后会停留在某块石块的前一个格子里)由于Bessie无法计算复杂的角度,她只能够向东南西北四个方向前进。很显然,Bessie不能够穿越石块,因此,Bessie仅仅可以向三个方向滑。
滑冰不是没有风险,Bessie滑向某个方向后必须能碰到某个石块,因此她必须很小心。考虑下面的一个情况,Bessie希望到达在她东面的目标位置(x=5,y=1),(. = 冰块,* = 石头, B = Bessie, G = 目的位置)如果她直接向东滑,那么她会滑过目标位置,因为她通过撞上某块石头来停下来,一个能够到达目标位置的方案是这样的:
这里写图片描述
(a) ( a ) 中,Bessie
只能朝向北,东,或者南三个方向,但是只有在北面能撞上石头从而停下来,在 (b) ( b ) 中,类似地,她只能向东走。
对于输入,石头 i i 位于坐标为Xi,Yi的位置, (1,000,000,000<=Xi<=1,000,000,000;1,000,000,000<=Yi<=1,000,000,000) ( − 1 , 000 , 000 , 000 <= X i <= 1 , 000 , 000 , 000 ; − 1 , 000 , 000 , 000 <= Y i <= 1 , 000 , 000 , 000 ) , 没有任何两块石头位于同一个位置,Bessie从Bx,By的位置出发(出发点一定与某个石头相邻),Bessie的目标位置是 Gx,Gy(1,000,000,000<=Gx<=1,000,000,000;1,000,000,000<=Gy<=1,000,000,000). G x , G y ( − 1 , 000 , 000 , 000 <= G x <= 1 , 000 , 000 , 000 ; − 1 , 000 , 000 , 000 <= G y <= 1 , 000 , 000 , 000 ) .
Bessie 并不介意长时间滑冰,但是,不停地推石头依靠反作用力前进很累。FJ 非常关心Bessie的健康,因此他希望知道Bessie最少要推多少次石头才能到达终点。
输入格式
第一行: 五个用空格隔开的整数: N,Bx,By,Gx,andGy N , B x , B y , G x , a n d G y
第二行到第 N+1 N + 1 行: 第 i+1 i + 1 行用两个空格隔开的整数来描述第i个石头
输出格式
第一行: 一个整数表示Bessie至少要推多少次石头才能够到达终点

不用STL的算法

这道题目是一个典型的BFS。
需要注意的是,我们需要把石子数做一个前缀和,进行二分查找石子位置就行了。
但是各种分情况,大概需要写12个不同的二分。虽然这些二分代码差不多,但是代码量太大了。查错也是一个难题。

用map和set优化

我们不用传统的数组来存放这些点的位置。
这里写图片描述
这样开两个映射,建立一个整数到一个集合的映射。 mapx[t] m a p x [ t ] 代表横坐标为 t t 的所有的点 的纵坐标的集合。
(ps:这里 mapx[t] m a p x [ t ] 可以直接当做一个 set s e t 来用)
当我们要找在某一个位置找同行或者同列的石头的时候,可以使用 lower_bound l o w e r _ b o u n d 函数.
( ps p s :这函数的用处在于,在一个集合里找到,>=某个数的最小数,并返回它在集合中的地址)
如果要找坐标比当前位置大的石子,那就直接使用这个函数;如果要找坐标比当前位置小的石子,那就找到之后,位置-1就行了.


这里写图片描述
这里的pos结构体是用来存一个点的所有信息,x和y是坐标,w是最短距离。
POS是一个点的坐标。 dis d i s 这个map把一个坐标映射到bool类型上,可以构造一个类似于以坐标为下标的数组,用来标记某个点是否被访问过。
q是广搜队列。

code

/*
by 柴犬首相
STL的使用
#290 ice 
2018.3.15 
*/ 
#include<bits/stdc++.h>
using namespace std;
inline int read()
{
    int num=0;
    char c=' ';
    bool flag=true;
    for(;c>'9'||c<'0';c=getchar())
    if(c=='-')
    flag=false;
    for(;c>='0'&&c<='9';num=num*10+c-48,c=getchar());
    return flag ? num : -num;
}//快读 
struct pos
{
    int x,y,w;
}B,G;
//这是一个点的所有信息,
//x和y代表是这个点的坐标
//w是代表源点B到这个点的最短距离 
typedef pair<int,int> POS;
//这个pair是存储坐标的 (用来当做map的下标) 
map<POS,bool>dis;
//这是一个以坐标为下标的数组
//用来存放某一个点是否访问过 
queue<pos>q;
//BFS队列 
map<int,set<int> >mapx;
map<int,set<int> >mapy;
//这是一个整数到集合的映射
//mapx[i]代表以横坐标为i的所有的点
//的纵坐标的集合 
int n;
void init()
{
    n=read();
    B.x=read();B.y=read();
    G.x=read();G.y=read();
    for (int i=1;i<=n;i++)
    {
        int a=read();
        int b=read();
        mapx[a].insert(b);
        mapy[b].insert(a);
    }
}//读入,自行理解!! 
void bfs()
{
    q.push(B);//初始点 
    set<int>t;//临时集合,用来简化代码 
    set<int>::iterator it;
    //这是一个迭代器,存放的是元素在集合中的地址 
    //并且这个指针只会指向集合中的元素 
    while (q.size()>0)
    {
        pos now=q.front();//队首元素,当前位置 
        //思考1:q.pop()为什么不能放在这里? 
        t=mapx[now.x];//用来代替,简化下面的代码 
        it=t.lower_bound(now.y);//找到目标点 
        if (it!=t.end()&&*it-1>now.y&&!dis[make_pair(now.x,*it-1)])
        //如果it==t.end(),那就代表,找不到比它大的 
        {
            if (now.x==G.x&&*it-1==G.y) return;//如果到目标点,那就弹出来 
            //思考2:这些判断为什么不能放在循环节开始的时候? 
            dis[make_pair(now.x,*it-1)]=1;//已经访问过 
            q.push((pos){now.x,*it-1,now.w+1});//压入队列 
        }//向上 
        if (it!=t.begin()&&*(--it)+1<now.y&&!dis[make_pair(now.x,*it+1)])
        //这里有点不一样,因为是向下走,所以目标点不是it,
        //而是集合中it之前的那个元素 
        {
            if (now.x==G.x&&*it+1==G.y) return;//如果到目标点,那就弹出来 
            dis[make_pair(now.x,*it+1)]=1;
            q.push((pos){now.x,*it+1,now.w+1});
        }//向下 
        t=mapy[now.y];
        it=t.lower_bound(now.x);
        if (it!=t.end()&&*it-1>now.x&&!dis[make_pair(*it-1,now.y)])
        {
            if (now.y==G.y&&*it-1==G.x) return;//如果到目标点,那就弹出来 
            dis[make_pair(now.x,*it-1)]=1;
            q.push((pos){*it-1,now.y,now.w+1});
        }//向右 
        if (it!=t.begin()&&*(--it)+1<now.x&&!dis[make_pair(*it+1,now.y)])
        {
            if (now.y==G.y&&*it+1==G.x) return;//如果到目标点,那就弹出来 
            dis[make_pair(*it+1,now.y)]=1;
            q.push((pos){*it+1,now.y,now.w+1});
        }//向左 
        q.pop();//弹出 
    }
}
int main()
{
    init();
    if (G.x==B.x&&G.y==B.y) printf("%d\n",0);
    else
    {
        bfs();
        printf("%d\n",q.front().w+1); 
    }
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
### 回答1: 题目描述 有N头奶牛,它们在M个牛棚之间相互转移。每个牛棚里有一些奶牛,每分钟可以容纳一头奶牛。一头奶牛从一个牛棚走到另一个牛棚需要一分钟的时间。现在,这些奶牛要开一个牛派对,它们要在同一时间到达同一个牛棚,所以它们需要在某个牛棚等待一段时间。你需要计算最小的等待时间,使得所有奶牛都能够在同一时间到达同一个牛棚。 输入格式 第一行包含三个整数N,M,X。 接下来M行,每行包含三个整数a,b,t,表示牛棚a和牛棚b之间有一条双向边,需要t分钟才能通过。 输出格式 输出一个整数,表示最小等待时间。 数据范围 1≤N≤500 1≤M≤10000 1≤X≤N 1≤a,b≤N 1≤t≤1000 输入样例#1 3 3 1 1 2 5 2 3 5 1 3 10 输出样例#1 5 输入样例#2 4 5 4 1 2 10 2 3 10 3 4 10 4 1 10 1 3 20 输出样例#2 30 算法1 (最短路) $O(N^3)$ Dijkstra算法 Dijkstra(迪杰斯特拉)算法是由荷兰计算机科学家狄克斯特拉于1956年发明的,因此又叫狄克斯特拉算法。 Dijkstra算法是一种贪心算法,用于求解一个节点到其他所有节点的最短路径。它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。 具体做法是:设立一个数组dis来保存源点到各个顶点的最短距离和一个数组book[i]来记录一个顶点是否已经在队列中。 初始时,原点s的路径权重被赋为0 (dis[s] = 0)。若对于顶点s存在能直接到达的边(s,m),则把dis[m]设为w(s, m),同时把所有其他(s不能直接到达的)顶点的路径长度设为无穷大。初始时,所有顶点并不属于任何已知最短路径所包含的顶点集合,因此都被标记为未知最短路径长度。当算法结束时,dis[v]中存储的便是源点s到顶点v的最短路径,或者如果从s无法到达v,则值为INF。 Dijkstra算法流程: 算法流程: 1. 将所有顶点分为两部分:已知最短路的顶点集合P和未知最短路的顶点集合Q。 2. 初始时,顶点集合P中只有源点s一个元素,以源点s为起点向外扩展。 3. 每次从顶点集合Q中选取一个顶点u(u的dist最小),并加入到顶点集合P中,同时以u为中心进行扩展。 4. 重复步骤3,直到顶点集合Q为空或者终点被加入到顶点集合P中。 5. 算法结束,最短路径保存在dis数组中。 时间复杂度 Dijkstra算法的时间复杂度为O(N^2)。由于N较小,因此可以通过本题。 参考文献 Dijkstra算法讲解 C++ 代码 算法2 (最短路) $O(N^2)$ Floyd算法 Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。 Floyd算法的基本思想 设G=(V,E)是一个带权有向图,其邻接矩阵为W。V={v1,v2,……,vn},W[1:n,1:n],则该图的Floyd算法可描述如下: 时间复杂度 Floyd算法的时间复杂度为O(N^3)。由于N较小,因此可以通过本题。 参考文献 Floyd算法讲解 C++ 代码 算法3 (最短路) $O(N^2)$ Bellman-Ford算法 Bellman-Ford算法是一种单源最短路径算法,可以处理负权边,但不能处理负权回路。 Bellman-Ford算法的基本思想 对于图中的任意一条边(u, v),Bellman-Ford算法会对每一条边进行一次松弛操作(Relax),并且这些操作是按照顺序进行的:当算法进行第i次松弛操作时,它只会改变长度为i+1的路径上的顶点的值。因此,当算法执行完第n-1次松弛操作后,路径长度最长不超过n-1,此时所有最短路径都已经求出。 时间复杂度 Bellman-Ford算法的时间复杂度为O(N*M)。由于N和M的范围较小,因此可以通过本题。 参考文献 Bellman-Ford算法讲解 C++ 代码 ### 回答2: Usaco 2007 Feb的问题是关于Cow Party的。这个问题中,农夫约翰有N头奶牛,它们之间通过一些路径相互连接,并且每个路径都有一个长度。约翰想要在某个时间将它的所有奶牛聚集在一起举办一个派对,现在他想知道所有奶牛从各自的位置到达聚会地点所需的最短时间。 为了解决这个问题,我们可以使用Dijkstra算法。我们首先需要创建一个节点集合,包含所有的奶牛和派对地点,并且初始化每个节点的最短时间为无穷大。接下来,我们选取一个起点节点--聚会地点,并将它的最短时间设置为0。然后我们开始遍历所有的节点,每次选择一个最短时间未确定的节点,并更新它的邻居节点的最短时间。我们重复这个过程,直到所有节点的最短时间都确定。 在更新节点的最短时间时,我们需要根据节点之间的路径长度来更新。我们检查从当前节点到邻居节点的路径长度加上当前节点的最短时间是否小于邻居节点目前的最短时间。如果是,则更新邻居节点的最短时间为新的最短时间。 最后,我们可以得到所有奶牛到达聚会地点所需的最短时间。我们找到所有奶牛起始位置的最长最短时间,即为我们的答案。 通过使用Dijkstra算法,我们可以解决这个问题并得到最优解。因此,Usaco 2007 Feb的Cow Party问题可以通过这种方法解决。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值