【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

1.1 卷积神经网络

1.2 支持向量机

📚2 运行结果

2.1 数据

2.2 测试集的预测值与实际值

2.3 训练集的预测值与实际值

🎉3 参考文献

🌈4 Matlab代码、数据


💥1 概述

参考文献:

基于CNN-SVM的数据分类预测研究是一种常见的故障识别方法。CNN(卷积神经网络)是一种深度学习模型,具有良好的特征提取能力;而SVM(支持向量机)是一种经典的机器学习算法,用于进行数据分类。这两种方法的结合可以充分发挥各自的优势。

首先,CNN作为预处理步骤,可以自动学习输入数据的特征表示,从而减少手工特征工程的工作量。通过堆叠多个卷积层和池化层,CNN可以有效地从原始数据中提取有意义的特征。

接下来,将CNN的输出特征作为SVM的输入,用于进行分类预测。SVM是一种二分类模型,通过定义决策边界来将数据分为两类。通过高维特征的转换和核函数的选择,SVM可以在非线性分类问题上表现出很好的性能。

在故障识别领域,可以将CNN-SVM模型应用于基于传感器数据的故障分类任务。例如,可以使用传感器收集的数据作为CNN的输入,经过卷积和池化操作后得到特征表示,然后将特征输入SVM进行分类预测。这样的模型可以自动学习传感器数据中的模式和特征,从而实现故障的准确分类。

需要注意的是,构建CNN-SVM模型需要进行适当的参数选择和调优,以达到更好的性能。此外,还需要使用适当的数据集进行训练和评估,以验证模型的准确性和泛化能力。

适用于轴承故障识别/诊断/分类,变压器油气故障识别识别/诊断/分类,电力系统输电线路故障区域识别/诊断/分类,绝缘子、配网故障识别/诊断/分类。

EXCEL表格直接导入,更换Excel表格的数据即可。

1.1 卷积神经网络

卷积神经网络(CNN)是一种特殊的前馈深度学习算法,具有强大的特征提取能力和非线性运算能

力,可以从原始数据中直接提取其明显特征,从而能够有效避免传统深度学习方法需要采取复杂数学方法进行数据特征提取的问题,其网络结构主要包含输入层、卷积层、池化层、全连接层和输出层.计算步骤如下所述。

1.2 支持向量机

📚2 运行结果

2.1 数据

2.2 测试集的预测值与实际值

2.3 训练集的预测值与实际值

部分代码:

%%  绘图figureplot(1:M,T_train,'c*',1:M,T_sim1,'mo','LineWidth',1)legend('真实值','预测值')xlabel('预测样本')ylabel('预测结果')string={'训练集预测结果对比';['准确率=' num2str(error1) '%']};title(string)grid
figureplot(1:N,T_test,'c*',1:N,T_sim2,'mo','LineWidth',1)legend('真实值','预测值')xlabel('预测样本')ylabel('预测结果')string={'测试集预测结果对比';['准确率=' num2str(error2) '%']};title(string)grid

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]田鹏飞,于游,董明等.基于CNN-SVM的高压输电线路故障识别方法[J].电力系统保护与控制,2022,50(13):119-125.DOI:10.19783/j.cnki.pspc.211196.

🌈4 Matlab代码、数据

使用Matlab实现CNN-SVM卷积支持向量机分类预测的步骤如下: 1. 数据准备:首先,需要准备训练和测试数据集。这些数据集应包含已标记的样本图像和对应的分类标签。 2. 卷积神经网络CNN)训练:使用Matlab的深度学习工具箱,可以构建和训练卷积神经网络。首先,定义网络架构,包括卷积层、池化层、全连接层等,并设置相应的超参数(如学习率、批处理大小等)。然后,使用训练数据集对网络进行训练,通过反向传播算法优化网络权重。重复训练过程直到达到预设的准确率或迭代次数。 3. 特征提取:在训练完成后,使用训练好的CNN模型提取图像的特征表示。通过将图像输入到CNN中,获取卷积层或全连接层的输出作为特征向量。 4. 支持向量机SVM)训练:使用MatlabSVM工具箱,将CNN提取的特征向量作为输入数据,对SVM进行训练。在训练过程中,选择合适的核函数(如线性核、高斯核等),并设置相应的超参数(如正则化参数、惩罚项等)。训练过程将优化支持向量机模型的权重和偏置。 5. 分类预测:使用训练好的CNN-SVM模型进行分类预测。首先,将测试样本输入到CNN中,提取特征向量。然后,将特征向量作为输入数据,通过训练好的SVM模型进行分类预测。根据SVM模型返回的分类结果,确定图像的类别。 综上所述,借助Matlab的深度学习和机器学习工具箱,可以实现CNN-SVM卷积支持向量机分类预测。通过训练卷积神经网络支持向量机模型,提取图像特征并进行分类预测。这种组合方法可以充分利用卷积神经网络在图像识别任务中的优势,并借助支持向量机分类能力,提高分类预测的准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值