好吧,其实是个套路题。
这种选k大的,有一种套路就是用堆维护,连续取k个,一边取一边加入新的。跟那个给你几个数组求k大和的很像。
考虑暴力:首先 s i s_i si为异或前缀和这大家肯定都会, O ( n 2 ) O(n^2) O(n2)枚举区间,加进堆里或者放数组里最后排序,取前 k k k大即可。
我们考虑一个优化:我们在枚举区间 [ l , r ] [l,r] [l,r]这一步,可以只枚举一个右端点 r r r,然后在 [ 0 , r − 1 ] [0,r-1] [0,r−1]上找到一个与 s r s_r sr异或值最大的 s l s_l sl,那么 s l x o r s r s_l\ xor\ s_r sl xor sr即为 [ 1 , r ] [1,r] [1,r]上的最大异或和(第 1 1 1大异或和)。这样我们就把 n n n个前缀最大异或和加进了堆里。
然后我们从堆中连续取 k k k次,当取出一个元素时,首先把它加入答案,然后假设它是所在前缀的第 r a n k rank rank大异或和,我们只要查询那个前缀的第 r a n k + 1 rank+1 rank+1大异或和,加入堆里即可。
不难发现我们需要用堆维护三元组 ( p o s , r a n k , s o ) (pos, rank, so) (pos,rank,so),分别表示所在前缀,第几大,异或和是多少。
剩下的问题就是,查询一个前缀的 K K K大异或和,这就是可持久化01Trie模板题了。
代码千万条,long long第一条。忘记开long long,爆零两行泪。
#include <cctype>
#include <cstdio>
#include <climits>
#include <algorithm>
#include <queue>
#include <vector>
template <typename T> inline void read(T& x) {
int f = 0, c = getchar(); x = 0;
while (!isdigit(c)) f |= c == '-', c = getchar();
while (isdigit(c)) x = x * 10 + c - 48, c = getchar();
if (f) x = -x;
}
template <typename T, typename... Args>
inline void read(T& x, Args&... args) {
read(x); read(args...);
}
template <typename T> void write(T x) {
if (x < 0) x = -x, putchar('-');
if (x > 9) write(x / 10);
putchar(x % 10 + 48);
}
template <typename T> inline void writeln(T x) { write(x); puts(""); }
template <typename T> inline bool chkmin(T& x, const T& y) { return y < x ? (x = y, true) : false; }
template <typename T> inline bool chkmax(T& x, const T& y) { return x < y ? (x = y, true) : false; }
typedef long long LL;
const int maxn = 5e5 + 207;
struct HeapNode {
int pos, rk;
LL so;
HeapNode() : pos(0), rk(0), so(0) {}
HeapNode(int a, int b, LL c) : pos(a), rk(b), so(c) {}
};
inline bool operator<(const HeapNode &lhs, const HeapNode &rhs) {
return lhs.so < rhs.so;
}
std::priority_queue<HeapNode> heap;
LL a[maxn], s[maxn];
int n, K;
struct Node {
int ch[2], sum;
};
Node T[maxn << 6];
int root[maxn], tot;
void insert(int &o, LL x, int i) {
T[++tot] = T[o]; ++T[o = tot].sum;
if (i < 0) return;
int j = (x >> i) & 1;
insert(T[o].ch[j], x, i - 1);
}
LL query(int o, LL x, int k, int i) {
if (i < 0) return 0;
int j = (x >> i) & 1;
int s = T[T[o].ch[j ^ 1]].sum;
if (k <= s) return (1ll << i) + query(T[o].ch[j ^ 1], x, k, i - 1);
else return query(T[o].ch[j], x, k - s, i - 1);
}
int main() {
read(n, K);
for (int i = 1; i <= n; ++i) {
read(a[i]);
s[i] = s[i - 1] ^ a[i];
insert(root[i] = root[i - 1], s[i - 1], 32);
}
for (int i = 1; i <= n; ++i)
heap.emplace(i, 1, query(root[i], s[i], 1, 32));
LL ans = 0;
for (int i = 1; i <= K; ++i) {
auto one = heap.top(); heap.pop();
ans += one.so;
if (one.rk <= one.pos)
heap.emplace(one.pos, one.rk + 1, query(root[one.pos], s[one.pos], one.rk + 1, 32));
}
writeln(ans);
return 0;
}
我也不知道为什么我写的这么慢,开了O2才过。幸好比赛的时候的确开O2。可是这跟我有什么关系呢…我又没在考场上做出来
数组不要开小