赛题链接:https://leetcode-cn.com/contest/weekly-contest-155
赛题重述
- 《最小绝对差》
给你一个数组,每个元素都不同,要你求数组中任意两元素的差值中最小的那个,并将差值为该最小值的元素对输出。 - 《丑数》
给一个定义:给定三个数a,b,c。能被这三个数中任意一个整除的数叫做丑数。(此定义并非丑数的真实定义)给定一个整数n,要你求出从1开始的自然数列中的第n个丑数。 - 《交换字符中的元素》
给定一个字符串s,以及一些“下标对”,或者叫做“索引对”数组 pairs。其中pairs[i]=[a,b]表示字符串中的两个索引(编号从0开始)。对于字符串中索引指向的字符,可以“任意多次”地交换。现在请你返回经过若干次交换后,可以得到的字典序最小的字符串。 - 《项目管理》
思考
- 第一题,特别眼熟,是李春葆《算法分析与设计》第一章的课后习题第12题。思路也很简单直接:
(1)对数组排个序(升序)
(2)用一个变量记录相邻元素的差值,并不断与后面的元素之差相比较,记录下较小者。
(3)用循环遍历数组依次比较相邻元素的差值与最小差值是否相等,若相等则输出元素对。
#include<iostream>
#include<algorithm>
#include<vector>
#define input 8//设置向数组中输入多少个数
using namespace std;
class Solution {
public:
vector<int> num;
vector<int>::iterator it;
// minimumAbsDifference(num);
vector<vector<int> > minimumAbsDifference(vector<int>& arr) {
vector<vector<int> > mini;
vector<int>::iterator it;
vector<vector<int> >::iterator iter;
sort(arr.begin(),arr.end());//步骤一排序
for(it=arr.begin();it<arr.end();it++){
cout<<*it<<endl;
}
int t=*(arr.end()-1)-*arr.begin();//t记录最小差值
for(it=arr.begin()+1;it<arr.end();it++){//循环遍历,寻找相邻差中最小的那个
int k=*(it)-*(it-1);//变量k记录从第1项开始,后项与前一项的差值
if(t>k){
swap(t,k);
}
}
// cout<<"最小差值为:"<<t<<endl;
for(it=arr.begin()+1;it<arr.end();it++){//循环遍历,寻找差值与记录下的值相等的元素对
vector<int> vec;
if(t==*(it)-*(it-1)){//找到了元素对
// cout<<*(it-1)<<" "<<*it<<endl;
vec.push_back(*(it-1));
vec.push_back(*it);
mini.push_back(vec);
}
}
// cout<<"已经找完元素对"<<endl;
//输出结果
cout<<mini.size()<<endl;
for(int i=0;i<mini.size();i++){
for(int j=0;j<2;j++){
cout<<mini[i][j]<<" ";
}
}
return mini;
}
};
int main()
{
Solution my;
for(int i=0;i<input;i++){
int k=0;
cin>>k;
my.num.push_back(k);
}
my.minimumAbsDifference(my.num);
return 0;
}
- 第二题,找第n个丑数。
最开始的想法就是暴力法,从1开始循环判断是否能被三个数整除,但是很显然会超时。这里用的是别人的思路,为避免超时,用二分的思想,将我们一个个对应着找第多少个“丑数”,转换成直接判断在该范围内有多少个丑数。也就是1-mid中有多少个丑数,这个个数用集合论中的容斥原理求解,在丑数个数大于n或小于n的时候,调整范围。直至找到这个满足1~mid内有n个丑数的mid。最后,由于由多个满足条件的mid值,从大到小找满足上述条件最小的那个mid,也即用一个循环判断,循环体中:mid–。
class Solution {
public:
typedef long long ll;
ll gcd(ll m,ll n)//最小公倍数
{
ll t,r;
if(m<n)
swap(m,n); //交换二者的值
while(n!=0)
{
r=m%n;
m=n;
n=r;
}
return m;
}
ll lcm(ll m,ll n)
{
return (m*n)/gcd(m,n);
}
ll Floor(ll maxnum,ll a,ll b,ll c)//求0到上限maxnum范围内,能被a或b或c整除的数有多少个
{
//利用容斥原理求个数
return (maxnum/a+maxnum/b+maxnum/c-(maxnum/lcm(a,b)+maxnum/lcm(a,c)+maxnum/lcm(b,c))+maxnum/lcm(lcm(a,b),c));
}
ll nthUglyNumber(ll n, ll a, ll b, ll c) {
ll mid=0,r=0,l=1;//mid为中值,r为右上限,l为左下限
r=2*pow(10,9)+1;
mid=(r+l)/2;
while(Floor(mid,a,b,c)!=n){
if(Floor(mid,a,b,c)>n){
r=mid-1;
}else if(Floor(mid,a,b,c)<n){
l=mid+1;
}
mid=(r+l)/2;
}
//问题在于用Floor判断时,是用的集合的方法,有多个mid值对应着相同的n
//我们需要的是,这多个mid值中最小的那个,用以代表从1开始找丑数,找到的第n个丑数
while(!(Floor(mid,a,b,c)==n&&Floor(mid-1,a,b,c)!=n)){
mid--;
}
return mid;
}
};
- 第三题。考虑到如果有两个索引对pairs[i]与pairs[j]中四个元素有相同的,比如说(0,1)与(1,2),则其实实际上索引对(0,1,2)对应的字符可以任意排序。基于这个思路,我们可以按照以下步骤求解:
[1]将索引对中元素有交叉的合并成一个索引组,该索引组中对应元素可以任意排序。
[2]按照上述分组,将每一组依据字典最小序排列。
[3]将上述排列好的组复原至原字符串。
/*
代码来自王同学的博客,详情见文底链接
*/
#include<bits/stdc++.h>
using namespace std;
vector<int> father,sz;
int find(int x){ // 并查集 查
return father[x]==x?x:father[x] = find(father[x]);
}
string smallestStringWithSwaps(string s,vector<vector<int> > pairs){
int n=s.size();
father.resize(n);
sz.resize(n);
for(int i=0;i<n;i++){ // 初始化
father[i] = i;
sz[i] = 1;
}
int n1 = pairs.size();
for(int i=0;i<n1;i++){
vector<int> tmp = pairs[i];
int f1 = find(tmp[0]),f2=find(tmp[1]);
if(f1!=f2){
if(sz[f1]<sz[f2]){
father[f1] = f2;
sz[f2] += sz[f1];
}
else{
father[f2] = f1;
sz[f1] += sz[f2];
}
}
}
vector<vector<char> > charArr(n);
vector<vector<int> > posArr(n);
// 并查集发挥作用
for(int i=0;i<n;i++){
charArr[find(i)].push_back(s[i]);
posArr[find(i)].push_back(i);
}
// char数组排序
for(int i=0;i<charArr.size();i++){
sort(charArr[i].begin(),charArr[i].end());
}
// 把排完序的联通块,合到一起
string s1(n,'\0');
for(int i=0;i<n;i++){
for(int j=0;j<charArr[i].size();j++){
s1[posArr[i][j]] = charArr[i][j];
}
}
return s1;
}
// 测试下
int main()
{
string s="cba";
vector<vector<int> > v;
vector<int> s1,s2;
s1.push_back(0);
s1.push_back(1);
s2.push_back(1);
s2.push_back(2);
v.push_back(s1),v.push_back(s2);
cout << smallestStringWithSwaps(s,v) << endl;
return 0;
}
- 第四题。
略
友情链接:https://blog.csdn.net/SinclairWang/article/details/101155751#commentBox
赛后题解:https://leetcode-cn.com/circle/article/wNK6s3/