「SDOI2019」世界地图

Address

loj3112
luogu P5360
bzoj5531

Solution

对于 1 ≤ i ≤ m 1\leq i\leq m 1im,考虑分别预处理经度在 [ 1 , i ] [1,i] [1,i] [ i , m ] [i,m] [i,m] 的点的 MST \text{MST} MST。询问的时候合并 [ 1 , l − 1 ] [1,l-1] [1,l1] [ r + 1 , m ] [r+1,m] [r+1,m] 即可。

先考虑怎么预处理 [ 1 , i ] [1,i] [1,i] MST \text{MST} MST [ i , m ] [i,m] [i,m] 同理)。

假设我们已经有了 [ 1 , i − 1 ] [1,i-1] [1,i1] MST \text{MST} MST,现在要在这里加上经度为 i i i 的点和一些边。

考虑加入一条边 ( u , v , w ) (u,v,w) (u,v,w) 会发生什么:

1. 1. 1. u , v u,v u,v 不连通,连接 u , v u,v u,v
2. 2. 2. u , v u,v u,v 已经连通,且路径 u → v u→v uv 的边的最大值 ≤ w \leq w w,什么也不会发生。
3. 3. 3. u , v u,v u,v 已经连通,且路径 u → v u→v uv 的边的最大值 > w > w >w,断开这条最大边,连接 u , v u,v u,v

也就是说, [ 1 , i − 1 ] [1,i-1] [1,i1] MST \text{MST} MST 中可能会有一些边被删掉。我们把 MST \text{MST} MST第一列和最后一列的点称为关键点,那么被删掉的边 l l l 必定满足:存在关键点 x , y x,y x,y 使得 l l l 是路径 x → y x→y xy 上的权值最大边。

换句话说,把端点的经度在 [ 1 , i − 1 ] [1,i-1] [1,i1] 的边全部拿出来跑 kruscal \text{kruscal} kruscal。边 l l l 会连接两个连通块,如果这两个连通块里面都有关键点,那么 l l l 可能被删掉,否则 l l l 不可能被删掉。

因此记录边集 p r e i pre_i prei 表示经度在 [ 1 , i ] [1,i] [1,i] 的点的 MST \text{MST} MST 中,之后可能被删的边。

[ 1 , i − 1 ] [1,i-1] [1,i1] MST \text{MST} MST 中,不在 p r e i − 1 pre_{i-1} prei1 的边(之后肯定不会被删的边)肯定都在 [ 1 , i ] [1,i] [1,i] MST \text{MST} MST 中。 假设 p r e i − 1 pre_{i-1} prei1 中的边的端点都是关键点,那么我们只要把 p r e i − 1 pre_{i-1} prei1 和新加入的 2 n − 1 2n-1 2n1 条边一起拿出来跑 kruscal \text{kruscal} kruscal,所得结果加上肯定不会被删的边,就是 [ 1 , i ] [1,i] [1,i] MST \text{MST} MST

可是 p r e i − 1 pre_{i-1} prei1 的边的端点不一定都是关键点,怎么办呢?

考虑 kruscal \text{kruscal} kruscal 的过程:

int fu = find(u), fv = find(v);
if (fu != fv) 在 MST 中加入边 (u, v, w);

其实和这样是等价的:

int fu = find(u), fv = find(v);
if (fu != fv) 在 MST 中加入边 (fu, fv, w);

假设 p r e i − 1 pre_{i-1} prei1 中的边都是关键点,那么可以考虑这样求出 p r e i pre_i prei

inline void solve(vector<edge> &a, vector<edge> &b, ll &del)
{
    int len = a.size(), i;
    sort(a.begin(), a.end(), cmp);
    b.clear(); del = 0;
    for (i = 0; i < len; i++)
    {
        int x = a[i].x, y = a[i].y, v = a[i].v, fx = find(x), fy = find(y);
        if (fx == fy) del += v;
        else
        {
            if (bo[fx] && bo[fy]) link(fx, fy), b.push_back((edge){fx, fy, v}); 
            // 保证 b 中的边都是关键点
            else if (bo[fx]) link(fx, fy);
            else link(fy, fx);
        }
    }
}

其中 a a a p r e i − 1 pre_{i-1} prei1 加上新的 2 n − 1 2n-1 2n1 条边, b o x = 1 bo_x=1 box=1 表示 x x x 是关键点, b b b p r e i pre_i prei

这样我们就得到了 p r e i pre_i prei s u f i suf_i sufi 同理。

对于询问 ( l , r ) (l,r) (l,r),只要把 p r e l − 1 pre_{l-1} prel1 s u f r + 1 suf_{r+1} sufr+1 合并即可,方法跟已知 p r e i − 1 pre_{i-1} prei1 p r e i pre_i prei 差不多。

时间复杂度 O ( n m log ⁡ n ) O(nm\log n) O(nmlogn)

Code

#include <bits/stdc++.h>

using namespace std;

#define ll long long

template <class t>
inline void read(t & res)
{
    char ch;
    while (ch = getchar(), !isdigit(ch));
    res = ch ^ 48;
    while (ch = getchar(), isdigit(ch))
    res = res * 10 + (ch ^ 48);
}

template <class t>
inline void print(t x)
{
    if (x > 9) print(x / 10);
    putchar(x % 10 + 48);
}

const int N = 105, M = 10005, T = N * M;
struct edge
{
    int x, y, v;
};
vector<edge> pre[M], suf[M];
int n, rht[N][M], dwn[N][M], m, f[T], lim, q;
bool bo[T];
unsigned int SA, SB, SC; 
ll pres[M], sufs[M], ans; 
// pres[i] 表示 [1,i] 的 MST 的边权之和,sufs[i] 同理

inline int getweight() 
{
    SA ^= SA << 16;
    SA ^= SA >> 5;
    SA ^= SA << 1;
    unsigned int t = SA;
    SA = SB;
    SB = SC;
    SC ^= t ^ SA;
    return SC % lim + 1;
}

inline void gen() 
{
    read(n); read(m); read(SA); read(SB); read(SC); read(lim);
    int i, j;
    for (i = 1; i <= n; i++)
        for (j = 1; j <= m; j++) 
            rht[i][j] = getweight();
    for (i = 1; i < n; i++)
        for (j = 1; j <= m; j++) 
            dwn[i][j] = getweight();
}

inline int id(int x, int y)
{
    return (x - 1) * m + y;
}

inline int find(int x)
{
    return f[x] == x ? x : f[x] = find(f[x]);
}

inline bool cmp(const edge &a, const edge &b)
{
    return a.v < b.v;
}

inline void link(int x, int y)
{
    f[y] = x;
}

inline void upt(int x, bool y)
{
    f[x] = x;
    bo[x] = y;
}

inline void solve(vector<edge> &a, vector<edge> &b, ll &del)
{
    int len = a.size(), i;
    sort(a.begin(), a.end(), cmp);
    b.clear(); del = 0;
    for (i = 0; i < len; i++)
    {
        int x = a[i].x, y = a[i].y, v = a[i].v, fx = find(x), fy = find(y);
        if (fx == fy) del += v;
        else
        {
            if (bo[fx] && bo[fy]) link(fx, fy), b.push_back((edge){fx, fy, v});
            else if (bo[fx]) link(fx, fy);
            else link(fy, fx);
        }
    }
}

inline void init_pre()
{
    int i, j;
    for (i = 1; i <= n * m; i++) f[i] = i;
    ll del;
    vector<edge> a, b;
    for (i = 1; i <= m; i++)
    {
        for (j = 1; j <= n; j++)
        {
            upt(id(j, i), 1);
            upt(id(j, 1), 1);
            if (i > 2) upt(id(j, i - 1), 0);
        }
        a = pre[i - 1];
        pres[i] = pres[i - 1];
        for (j = 1; j <= n; j++)
        {
            if (i != 1)
            {
                a.push_back((edge){id(j, i - 1), id(j, i), rht[j][i - 1]});
                pres[i] += rht[j][i - 1];
            } 
            if (j != n)
            {
                a.push_back((edge){id(j, i), id(j + 1, i), dwn[j][i]});
                pres[i] += dwn[j][i];
            }
        }
        solve(a, b, del);
        pre[i] = b;
        pres[i] -= del;
    }
}

inline void init_suf()
{
    int i, j;
    ll del;
    for (i = 1; i <= n * m; i++) f[i] = i, bo[i] = 0;
    vector<edge> a, b;
    for (i = m; i >= 1; i--)
    {
        for (j = 1; j <= n; j++)
        {
            upt(id(j, i), 1);
            upt(id(j, m), 1);
            if (i < m - 1) upt(id(j, i + 1), 0);
        }
        a = suf[i + 1];
        sufs[i] = sufs[i + 1];
        for (j = 1; j <= n; j++)
        {
            if (i != m)
            {
                a.push_back((edge){id(j, i + 1), id(j, i), rht[j][i]});
                sufs[i] += rht[j][i];
            } 
            if (j != n)
            {
                a.push_back((edge){id(j, i), id(j + 1, i), dwn[j][i]});
                sufs[i] += dwn[j][i];
            }
        }
        solve(a, b, del);
        suf[i] = b;
        sufs[i] -= del;
    }
}

int main()
{
    gen();
    init_pre();
    init_suf();
    int l, r, i;
    read(q);
    for (i = 1; i <= n * m; i++) f[i] = i, bo[i] = 0;
    while (q--)
    {
        read(l); read(r);
        ans = pres[l - 1] + sufs[r + 1];
        vector<edge> a, b;
        for (i = 1; i <= n; i++)
        {
            ans += rht[i][m];
            a.push_back((edge){id(i, m), id(i, 1), rht[i][m]});
            upt(id(i, m), 0);
            upt(id(i, 1), 0);
            upt(id(i, l - 1), 0);
            upt(id(i, r + 1), 0);
        }
        int len = pre[l - 1].size();
        for (i = 0; i < len; i++) a.push_back(pre[l - 1][i]);
        len = suf[r + 1].size();
        for (i = 0; i < len; i++) a.push_back(suf[r + 1][i]);
        ll del = 0;
        solve(a, b, del);
        ans -= del;
        print(ans); putchar('\n');
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值