「十二省联考 2019」希望

Solution

  • 题意简述:选出 k k k 个树上连通块,使得存在一个点 u u u 满足:
    1. u u u 在这 k k k 个连通块的交集之中。
    2.对于这 k k k 个连通块中的任意一点 v v v,都有: d i s t ( v , u ) ≤ L dist(v,u)≤L dist(v,u)L
1.容斥
  • 我们钦定根节点为1。记 u u u 的父亲为 f a [ u ] fa[u] fa[u] 。记所有合法方案中,满足连通块交集包含点 u u u 的方案数为 A ( u ) A(u) A(u),满足连通块交集包含边 ( u , f a [ u ] ) (u,fa[u]) (u,fa[u]) 的方案数为 B ( u ) B(u) B(u),那么 ∑ i = 1 n A ( i ) − ∑ i = 2 n B ( i ) \sum_{i=1}^{n}A(i)-\sum_{i=2}^{n}B(i) i=1nA(i)i=2nB(i) 就是答案。
  • 考虑这样算为什么是对的:
  • 设一个合法方案中,连通块的交集为 S S S。对于 S S S 中的每个点 u u u A ( u ) A(u) A(u) 中都包含此方案。对于 S S S 中的每条边 ( v , f a [ v ] ) (v,fa[v]) (v,fa[v]) B ( v ) B(v) B(v) 中都包含此方案。众所周知,树上连通块有一个绝妙的性质:点数 = = = 边数 + 1 +1 +1。那么 u u u 的个数会比 v v v 的个数多 1 1 1,也就是说此合法方案正好被统计一次。由此可得,每个合法方案都正好被统计一次,那么这样算就是对的。
2.朴素dp
  • f [ u ] [ i ] f[u][i] f[u][i] 表示满足以下条件的连通块 T T T 的个数 + 1 +1 +1
    1. T T T 中必须包含 u u u
    2. T T T 中只能包含 u u u 子树的点。
    初值: f [ u ] [ 0 ] = 2 f[u][0]=2 f[u][0]=2
    d p dp dp式: f [ u ] [ i ] = ∏ v ∈ c h i l d [ u ] f [ v ] [ i − 1 ] + 1 f[u][i]=\prod_{v∈child[u]}f[v][i-1]+1 f[u][i]=vchild[u]f[v][i1]+1

  • g [ u ] [ i ] g[u][i] g[u][i] 表示满足以下条件的连通块 T T T 的个数:
    1. T T T 中必须包含 u u u
    2. T T T 中只能包含 u u u u u u 子树的点。
    初值: g [ u ] [ 0 ] = 1 g[u][0]=1 g[u][0]=1
    d p dp dp式: g [ v ] [ i ] = g [ u ] [ i − 1 ] ∗ ∏ x ∈ c h i l d [ u ] 且 x ! = v f [ x ] [ i − 2 ] + 1 g[v][i]=g[u][i-1]*\prod_{x∈child[u]且x!=v}f[x][i-2]+1 g[v][i]=g[u][i1]xchild[u]x!=vf[x][i2]+1
    特殊地, i = 1 i=1 i=1 时不用乘 ∏ x ∈ c h i l d [ u ] 且 x ! = v f [ x ] [ i − 2 ] \prod_{x∈child[u]且x!=v}f[x][i-2] xchild[u]x!=vf[x][i2]

  • A ( u ) = [ ( f [ u ] [ L ] − 1 ) ∗ ( g [ u ] [ L ] ) ] k A(u)=[(f[u][L]-1)*(g[u][L])]^k A(u)=[(f[u][L]1)(g[u][L])]k

  • B ( u ) = [ ( f [ u ] [ L − 1 ] − 1 ) ∗ ( g [ u ] [ L ] − 1 ) ] k B(u)=[(f[u][L-1]-1)*(g[u][L]-1)]^k B(u)=[(f[u][L1]1)(g[u][L]1)]k

3.长链剖分优化 f f f
  • 考虑如果 v v v u u u 的轻儿子怎么转移:
  • m x [ v ] mx[v] mx[v] 为点 v v v 子树里深度最大的点到 v v v 的距离。
  • 转移 f [ u ] [ i ] = f [ v ] [ i − 1 ] + 1 f[u][i]=f[v][i-1]+1 f[u][i]=f[v][i1]+1 的时候, i i i 最大会到 m x [ u ] mx[u] mx[u]。但是,为了保证时间复杂度为 ∑ \sum 链长, i i i 是不可以枚举到 m x [ u ] mx[u] mx[u] 的。
  • 怎么办呢?我们发现对于任意 i − 1 > m x [ v ] i-1>mx[v] i1>mx[v],都有 f [ v ] [ i − 1 ] = f [ v ] [ m x [ v ] ] f[v][i-1]=f[v][mx[v]] f[v][i1]=f[v][mx[v]]
  • 那么我们不用枚举到 m x [ u ] mx[u] mx[u]。我们只要枚举 i i i m x [ v ] + 1 mx[v]+1 mx[v]+1 就可以了。
  • 至于 v v v f [ u ] [ m x [ v ] + 2... m x [ u ] ] f[u][mx[v]+2...mx[u]] f[u][mx[v]+2...mx[u]] 的贡献,我们考虑打一个标记 m u l [ u ] mul[u] mul[u],表示 f [ u ] [ 0... m x [ u ] ] f[u][0...mx[u]] f[u][0...mx[u]] 都乘上 m u l [ u ] mul[u] mul[u]
  • 显然要: m u l [ u ] ∗ = f [ v ] [ m x [ v ] ] mul[u]*=f[v][mx[v]] mul[u]=f[v][mx[v]]
  • 然后对于 f [ u ] [ 0... m x [ v ] + 1 ] f[u][0...mx[v]+1] f[u][0...mx[v]+1],暴力乘上 f [ v ] [ m x [ v ] ] f[v][mx[v]] f[v][mx[v]] 的逆元即可。这样时间复杂度就是对的了。
  • 还有注意一点, f [ v ] [ m x [ v ] ] f[v][mx[v]] f[v][mx[v]] 的逆元不可以用快速幂计算(太慢),要提前 O ( n ) O(n) O(n) 预处理所有的 f [ v ] [ m x [ v ] ] f[v][mx[v]] f[v][mx[v]],然后 O ( n ) O(n) O(n) 求所有 f [ v ] [ m x [ v ] ] f[v][mx[v]] f[v][mx[v]] 的逆元。不会线性求逆元的左转 Luogu5431

  • 然后不是递推式的末尾有个 + 1 +1 +1 吗, 那么再记个 a d d [ u ] add[u] add[u]。现在 f [ u ] [ i ] f[u][i] f[u][i] 的真实值就是 f [ u ] [ i ] ∗ m u l [ u ] + a d d [ u ] f[u][i]*mul[u]+add[u] f[u][i]mul[u]+add[u] 了。
  • 然后为了保证 f [ u ] [ i ] ∗ m u l [ u ] + a d d [ u ] f[u][i]*mul[u]+add[u] f[u][i]mul[u]+add[u] f [ u ] [ i ] f[u][i] f[u][i] 的真实值,我们递推的时候不能直接 f [ u ] [ i ] ∗ = f [ v ] [ i − 1 ] f[u][i]*=f[v][i-1] f[u][i]=f[v][i1],而是要这样:
  • a s k 0 ( u , i ) ask0(u,i) ask0(u,i) 表示 f [ u ] [ i ] f[u][i] f[u][i] 真实值。
  • a s k 1 ( u , r e s ) ask1(u,res) ask1(u,res) 表示已知 f [ u ] [ i ] f[u][i] f[u][i] 的真实值为 r e s res res,求 f [ u ] [ i ] f[u][i] f[u][i]
  • 显然: a s k 1 ( u , r e s ) = ( r e s − a d d [ u ] ) ∗ i m u l [ u ] ask1(u,res)=(res-add[u])*imul[u] ask1(u,res)=(resadd[u])imul[u],其中 i m u l [ u ] imul[u] imul[u] m u l [ u ] mul[u] mul[u] 的逆元,维护 m u l [ u ] mul[u] mul[u] 的同时也要维护 i m u l [ u ] imul[u] imul[u]
  • 转移: f [ u ] [ i ] = a s k 1 ( a s k 0 ( u , i ) ∗ a s k 0 ( v , i − 1 ) , i ) f[u][i]=ask1(ask0(u,i)*ask0(v,i-1),i) f[u][i]=ask1(ask0(u,i)ask0(v,i1),i)
  • 然后暴力乘逆元的时候也要类似地利用 a s k 1 , a s k 0 ask1,ask0 ask1,ask0
  • 如果 v v v 是重儿子,直接把 f [ v ] , i m u l [ v ] , m u l [ v ] , a d d [ v ] f[v],imul[v],mul[v],add[v] f[v],imul[v],mul[v],add[v] 都传给 u u u 就行了。

  • 但是,如果 f [ v ] [ m x [ v ] ] m o d    998244353 = 0 f[v][mx[v]]\mod 998244353 = 0 f[v][mx[v]]mod998244353=0 呢?
  • 那么此时相当于把 f [ u ] [ m x [ v ] + 1... m x [ u ] ] f[u][mx[v]+1...mx[u]] f[u][mx[v]+1...mx[u]] 都赋值成 0 0 0
  • 我们考虑多记两个标记 l i m [ u ] , z e r o [ u ] lim[u],zero[u] lim[u],zero[u],然后定义:
    i &lt; l i m [ u ] , a s k 0 ( u , i ) = f [ u ] [ i ] ∗ m u l [ u ] + a d d [ u ] i&lt;lim[u],ask0(u,i)=f[u][i]*mul[u]+add[u] i<lim[u],ask0(u,i)=f[u][i]mul[u]+add[u]
    否则 a s k 0 ( u , i ) = z e r o [ u ] ∗ m u l [ u ] + a d d [ u ] 。 ask0(u,i)=zero[u]*mul[u]+add[u]。 ask0(u,i)=zero[u]mul[u]+add[u]
  • 那么如果 f [ v ] [ m x [ v ] ] = 0 f[v][mx[v]]=0 f[v][mx[v]]=0,令 l i m [ u ] = m x [ v ] + 2 , z e r o [ u ] = a s k 1 ( u , 0 ) lim[u]=mx[v]+2,zero[u]=ask1(u,0) lim[u]=mx[v]+2,zero[u]=ask1(u,0)
  • 转移轻儿子 v v v,枚举到 i i i 的时候,如果发现 l i m [ u ] = = i lim[u]==i lim[u]==i,说明此时 l i m [ u ] lim[u] lim[u] 的值需要增加。那么 l i m [ u ] + + , f [ u ] [ i ] = z e r o [ u ] lim[u]++,f[u][i]=zero[u] lim[u]++,f[u][i]=zero[u] 即可。

长链剖分优化f-参考程序

int *f[e], tmp1[e * 10], *it = tmp1 + 2;

namespace sf
{
	int mul[e], imul[e], add[e], lim[e], zero[e];
	
	inline void init(int u)
	{
		f[u] = it;
		it += (mx[u] + 5) * 2;
	}
	
	inline int ask0(int u, int i)
	{
		i = min(i, mx[u]);
		if (lim[u] <= i) return ((ll)mul[u] * zero[u] + add[u]) % mod;
		return ((ll)mul[u] * f[u][i] + add[u]) % mod;
	}
	
	inline int ask1(int u, int res)
	{	
		return (ll)sub(res, add[u]) * imul[u] % mod;
	}
	
	inline void dfs3(int u)
	{
		if (!son[u])
		{
			mul[u] = imul[u] = 1; add[u] = 2; lim[u] = n + 1;
			f1[u] = sub(ask0(u, L), 1); f2[u] = sub(ask0(u, L - 1), 1);
			return;
		}
		else
		{
			f[son[u]] = f[u] + 1; dfs3(son[u]); add[u] = add[son[u]]; 
			mul[u] = mul[son[u]]; imul[u] = imul[son[u]]; lim[u] = lim[son[u]] + 1;
			zero[u] = zero[son[u]]; f[u][0] = ask1(u, 1);
		}
		for (auto v : adj[u])
		{
			if (v == son[u]) continue;
			init(v); dfs3(v);
			for (int i = 0; i <= mx[v] + 1; i++)
			{
				if (lim[u] == i) f[u][lim[u]++] = zero[u];
				f[u][i] = ask1(u, (ll)ask0(u, i) * (i ? ask0(v, i - 1) : 1) % mod);
			} 
			if (!p[v])
			{
				lim[u] = mx[v] + 2; zero[u] = ask1(u, 0);
			}
			else
			{
				mul[u] = (ll)mul[u] * p[v] % mod; add[u] = (ll)add[u] * p[v] % mod;
				imul[u] = (ll)imul[u] * inv[v] % mod;
				for (int i = 0; i <= mx[v] + 1; i++)
				f[u][i] = ask1(u, (ll)ask0(u, i) * inv[v] % mod);
			}
		}
		add[u] = plu(add[u], 1); 
		f1[u] = sub(ask0(u, L), 1); f2[u] = sub(ask0(u, L - 1), 1);
		// f1[u]=f[u][L]真实值-1,f2[u]=f[u][L-1]真实值-1
	}
}
4.长链剖分优化g
  • 回顾 g g g d p dp dp 式:
    g [ v ] [ i ] = g [ u ] [ i − 1 ] ∗ ∏ x ∈ c h i l d [ u ] 且 x ! = v f [ x ] [ i − 2 ] + 1 g[v][i]=g[u][i-1]*\prod_{x∈child[u]且x!=v}f[x][i-2]+1 g[v][i]=g[u][i1]xchild[u]x!=vf[x][i2]+1

  • 对于 g [ v ] [ i ] = g [ u ] [ i − 1 ] g[v][i]=g[u][i-1] g[v][i]=g[u][i1] 这一部分,直接把 g g g 传给重儿子,然后轻儿子暴力转移即可。

  • 注意轻儿子只要转移到 g [ v ] [ m a x ( L − m x [ v ] , 0 ) . . . L ] g[v][max(L-mx[v],0)...L] g[v][max(Lmx[v],0)...L]

  • 然后 ∏ f [ x ] [ i − 2 ] \prod f[x][i-2] f[x][i2] 怎么办呢?

  • 对于重儿子依然可以暴力计算。和 f f f 一样,也要记 l i m , a d d , i m u l , m u l , z e r o lim,add,imul,mul,zero lim,add,imul,mul,zero

  • 对于轻儿子呢?我们发现它等于 f [ u ] [ i − 1 ] − 1 f [ v ] [ i − 2 ] \frac{f[u][i-1]-1}{f[v][i-2]} f[v][i2]f[u][i1]1,但要是 f [ v ] [ i − 2 ] m o d &ThinSpace;&ThinSpace; 998244353 = 0 f[v][i-2] \mod 998244353 =0 f[v][i2]mod998244353=0 呢?

  • 所以我们只能把它拆成一段前缀和一段后缀相乘的形式。


  • 先考虑前缀怎么办:
  • 我们把轻儿子 m x [ v ] mx[v] mx[v] 升序排序。然后记 b [ i ] b[i] b[i] 表示: ∏ x 的 d f s 序 ≤ v 且 x ∈ c h i l d [ u ] f [ x ] [ i ] \prod_{x的dfs序≤v且x∈child[u]}f[x][i] xdfsvxchild[u]f[x][i]
  • 也就是在枚举到 v v v 的时候把 f [ v ] [ 0... m x [ v ] ] f[v][0...mx[v]] f[v][0...mx[v]] 计入 b [ 0... m x [ v ] ] b[0...mx[v]] b[0...mx[v]] 就行了。
  • 然后对于 b [ m x [ v ] + 1... ∞ ] b[mx[v]+1...∞] b[mx[v]+1...],显然 v v v 对它们的贡献相同,那么额外记一个值就行了。
  • 大概就是这样:
int now = 0, tot = 1;
for (int i = 0; i <= mx[v]; i++)
if (i > now) b[i] = (ll)tot * sf::ask0(v, i) % mod;
else b[i] = (ll)b[i] * sf::ask0(v, i) % mod;
now = mx[v]; 
tot = (ll)tot * sf::ask0(v, mx[v]) % mod; //额外记一个 tot

  • 我们发现计算 f [ u ] [ i ] f[u][i] f[u][i] 的时候, f [ u ] [ i ] f[u][i] f[u][i] 的真实值要不断乘上 f [ v ] [ i − 1 ] f[v][i-1] f[v][i1]。也就是说,枚举到轻儿子 v v v 的时候, f [ u ] [ i ] f[u][i] f[u][i] 的真实值是 ∏ x 的 d f s 序 ≤ v 且 x ∈ c h i l d [ u ] f [ x ] [ i − 1 ] \prod_{x的dfs序≤v且x∈child[u]}f[x][i-1] xdfsvxchild[u]f[x][i1]
  • 这就是一段前缀的形式了。如果我们计算 g g g 的时候,把子节点的 d f s dfs dfs 顺序全部反过来,那它就是一段后缀的形式了。
  • 那就是说,在计算 f f f 的时候,把轻儿子按 m x [ v ] mx[v] mx[v] 降序排序,然后计算 g g g 的时候反过来就行了。
  • 但是我们现在并没有存下对于每个 v v v,上式的值。
  • 那么我们要做的就是:假设计算 f f f 的时候,儿子的 d f s dfs dfs 顺序为: v 1 , v 2 , v 3 , . . . , v m v_1,v_2,v_3,...,v_m v1,v2,v3,...,vm
  • 然后现在反过来,枚举到 v m v_m vm 的时候,我们要算出: ∏ j = 1 m − 1 f [ v j ] [ i ] \prod_{j=1}^{m-1}f[v_j][i] j=1m1f[vj][i],枚举到 v m − 1 v_{m-1} vm1 的时候,我们要算出: ∏ j = 1 m − 2 f [ v j ] [ i ] \prod_{j=1}^{m-2}f[v_j][i] j=1m2f[vj][i]……
  • 然后把算出的这个和 b b b 相乘就可以得出 ∏ f [ x ] [ i − 2 ] \prod f[x][i-2] f[x][i2] 了。
  • 具体地,我们可以在计算 f f f 的时候,枚举到每个轻儿子 v j v_j vj 的时候,都记一下在计算 v j v_j vj 的贡献之前, f [ u ] [ i ] f[u][i] f[u][i] 的真实值。也就是对于每个 v j v_j vj 都记下 ∏ k = 1 j − 1 f [ v ] [ i − 1 ] \prod_{k=1}^{j-1}f[v][i-1] k=1j1f[v][i1]

  • 但是不能直接把真实值记下来。因为计算 f f f 的时候转移的是 f [ v ] [ 0... m x [ v ] + 1 ] f[v][0...mx[v]+1] f[v][0...mx[v]+1]。而计算 g g g 的时候要算的是 g [ v ] [ m a x ( L − m x [ v ] , 0 ) . . . L ] g[v][max(L-mx[v],0)...L] g[v][max(Lmx[v],0)...L]
  • 所以我们在计算 f f f ,枚举到轻儿子 v v v 的时候,如果 f [ u ] [ i ] , l i m [ u ] , z e r o [ u ] , a d d [ u ] , m u l [ u ] , i m u l [ u ] f[u][i],lim[u],zero[u],add[u],mul[u],imul[u] f[u][i],lim[u],zero[u],add[u],mul[u],imul[u] 中任意一个的值改变了,都要把改变之前的值记下来。
  • 最后 f [ u ] [ i ] f[u][i] f[u][i] 的值有 + 1 +1 +1,看作是枚举到最后一个轻儿子时做的修改。
  • 具体实现时可以对每个 v v v 开一个栈 ( l i s t list list实现),计算 f f f 的时候记录下修改的地址和值,然后计算 g g g 的时候,按从栈顶到栈底的顺序还原这些元素的值。然后利用 s f : : a s k 0 sf::ask0 sf::ask0 就能知道 ∏ k = 1 j − 1 f [ v ] [ i − 1 ] \prod_{k=1}^{j-1}f[v][i-1] k=1j1f[v][i1] 的真实值了。

Code

#include <bits/stdc++.h>

using namespace std;

#define ll long long
#define pb push_back

template <class t>
inline void read(t & res)
{
   char ch;
   while (ch = getchar(), !isdigit(ch));
   res = ch ^ 48;
   while (ch = getchar(), isdigit(ch))
   res = res * 10 + (ch ^ 48);
}

const int e = 1e6 + 5, mod = 998244353;
vector<int>adj[e], h[e];
int *f[e], tmp1[e * 10], *it = tmp1 + 2, ans, n, L, fa[e], k, mx[e], b[e], ret[e];
int son[e], p[e], inv[e], pre[e], suf[e], f1[e], f2[e], *g[e], tmp2[e * 10];
struct point
{
   	int x, y;
}a[e]; 

inline int plu(int x, int y)
{
   	x += y;
   	if (x >= mod) x -= mod;
   	return x;
}

inline int sub(int x, int y)
{
   	x -= y;
   	if (x < 0) x += mod;
   	return x;
}

inline int ksm(int x, int y)
{
   	int res = 1;
   	while (y)
   	{
   		if (y & 1) res = (ll)res * x % mod;
   		y >>= 1;
   		x = (ll)x * x % mod;
   	}
   	return res;
}

inline void dfs0(int u, int pa)
{
   	fa[u] = pa;
   	for (auto v : h[u])
   	{
   		if (v == pa) continue;
   		dfs0(v, u);
   	}
}

inline bool cmp(int x, int y)
{
   	return mx[x] > mx[y];
}

inline void dfs1(int u)
{
   	for (auto v : adj[u])
   	{
   		dfs1(v);
   		mx[u] = max(mx[u], mx[v] + 1);
   		if (mx[v] > mx[son[u]]) son[u] = v;
   	}
   	sort(adj[u].begin(), adj[u].end(), cmp);
}

inline void dfs2(int u)
{
   	p[u] = 1;
   	for (auto v : adj[u])
   	{
   		dfs2(v);
   		p[u] = (ll)p[u] * p[v] % mod;
   	}
   	p[u] = plu(p[u], 1);
}

inline void prepare() // 线性求逆元
{
   	int i; pre[0] = 1;
   	for (i = 1; i <= n; i++) 
   	if (p[i]) pre[i] = (ll)pre[i - 1] * p[i] % mod;
   	else pre[i] = pre[i - 1];
   	suf[n] = ksm(pre[n], mod - 2);
   	suf[n + 1] = 0;
   	for (i = n - 1; i >= 0; i--) 
   	if (p[i + 1]) suf[i] = (ll)suf[i + 1] * p[i + 1] % mod;
   	else suf[i] = suf[i + 1];
   	for (i = 1; i <= n; i++) inv[i] = (ll)pre[i - 1] * suf[i] % mod; 
}

struct work
{
   struct node
   {
   		int *w, v; // 记录修改的地址和修改之前的值
   };
   list<node>q;
   
   inline void ins(int &x)
   {
   		q.pb((node){&x, x});
   }
   
   inline void regain()
   {
   		while (!q.empty()) *(q.back().w) = q.back().v, q.pop_back(); // 还原 
   }
}q[e];

namespace sf
{
   int mul[e], imul[e], add[e], lim[e], zero[e];
   
   inline void init(int u) // 地址分配
   {
   		f[u] = it;
   		it += (mx[u] + 5) * 2;
   }
   
   inline int ask0(int u, int i)
   {
   		i = min(i, mx[u]);
   		if (lim[u] <= i) return ((ll)mul[u] * zero[u] + add[u]) % mod;
   		return ((ll)mul[u] * f[u][i] + add[u]) % mod;
   }
   
   inline int ask1(int u, int res)
   {	
   		return (ll)sub(res, add[u]) * imul[u] % mod;
   }
   
   inline void dfs3(int u)
   {
   		if (!son[u])
   		{
   			mul[u] = imul[u] = 1; add[u] = 2; lim[u] = n + 1;
   			f1[u] = sub(ask0(u, L), 1); f2[u] = sub(ask0(u, L - 1), 1);
   			return;
   		}
   		else
   		{
   			f[son[u]] = f[u] + 1; dfs3(son[u]); add[u] = add[son[u]]; 
   			mul[u] = mul[son[u]]; imul[u] = imul[son[u]]; lim[u] = lim[son[u]] + 1;
   			zero[u] = zero[son[u]]; f[u][0] = ask1(u, 1);
   		}
   		int lst = 0;
   		for (auto v : adj[u])
   		{
   			if (v == son[u]) continue;
   			init(v); dfs3(v); lst = v;
   			for (int i = 0; i <= mx[v] + 1; i++)
   			{
   				if (lim[u] == i) 
   				q[v].ins(lim[u]), q[v].ins(f[u][i]), f[u][lim[u]++] = zero[u];
   				q[v].ins(f[u][i]);
   				f[u][i] = ask1(u, (ll)ask0(u, i) * (i ? ask0(v, i - 1) : 1) % mod);
   			} 
   			if (!p[v])
   			{
   				q[v].ins(lim[u]); q[v].ins(zero[u]);
   				lim[u] = mx[v] + 2; zero[u] = ask1(u, 0);
   			}
   			else
   			{
   				q[v].ins(mul[u]); q[v].ins(add[u]); q[v].ins(imul[u]);
   				mul[u] = (ll)mul[u] * p[v] % mod; add[u] = (ll)add[u] * p[v] % mod;
   				imul[u] = (ll)imul[u] * inv[v] % mod;
   				for (int i = 0; i <= mx[v] + 1; i++)
   				q[v].ins(f[u][i]), f[u][i] = ask1(u, (ll)ask0(u, i) * inv[v] % mod);
   			}
   		}
   		if (lst) q[lst].ins(add[u]);
   		add[u] = plu(add[u], 1); 
   		f1[u] = sub(ask0(u, L), 1); f2[u] = sub(ask0(u, L - 1), 1);
   	}
}

namespace sg
{
   	int mul[e], imul[e], add[e], lim[e], zero[e];
   	
   	inline void init(int u)
   	{
   		it += mx[u] + 5;
   		g[u] = it - max(L - mx[u], 0);
   		it += mx[u] + 5;
   	}
   	
   	inline int ask0(int u, int i)
   	{
   		if (lim[u] <= i) return ((ll)mul[u] * zero[u] + add[u]) % mod;
   		else return ((ll)mul[u] * g[u][i] + add[u]) % mod;
   	}
   	
   	inline int ask1(int u, int res)
   	{	
   		return (ll)sub(res, add[u]) * imul[u] % mod;
   	}
   	
   	inline void dfs4(int u)
   	{
   		int gu = ask0(u, L), tot = 1, now = 0, x = son[u];
   		ans = plu(ans, ksm((ll)f1[u] * gu % mod, k));
   		ret[u] = ask0(u, L);
   		if (u != 1) 
   		{
   			gu = sub(gu, 1);
   			ans = sub(ans, ksm((ll)f2[u] * gu % mod, k));
   		}
   		if (!x) return; 
   		b[0] = 1; reverse(adj[u].begin(), adj[u].end());
   		for (auto v : adj[u])
   		{
   			if (v == x) continue;
   			q[v].regain();  // 还原
   			init(v); 
   			mul[v] = imul[v] = 1; 
   			lim[v] = n + 1;
   			for (int i = max(0, L - mx[v]); i <= L; i++)
   			{
   				g[v][i] = (ll)(i ? ask0(u, i - 1): 1) * 
   				(i - 2 > now ? tot : i >= 2 ? b[i - 2] : 1) 
   				% mod * (i ? sf::ask0(u, i - 1) : 1) % mod;	
   				if (i) g[v][i] = plu(g[v][i], 1);
   			}
   			for (int i = 0; i <= mx[v]; i++)
   			if (i > now) b[i] = (ll)tot * sf::ask0(v, i) % mod;
   			else b[i] = (ll)b[i] * sf::ask0(v, i) % mod;
   			now = mx[v]; 
   			tot = (ll)tot * sf::ask0(v, mx[v]) % mod;
   		}
   		add[x] = add[u]; mul[x] = mul[u]; imul[x] = imul[u];
   		lim[x] = lim[u] + 1; zero[x] = zero[u]; g[x] = g[u] - 1;
   		int st = max(L - mx[x], 0);
   		for (auto v : adj[u])
   		{
   			if (v == x) continue; int ed = min(mx[v] + 2, L);
   			for (int i = st; i <= ed; i++)
   			{
   				if (lim[x] == i) g[x][lim[x]++] = zero[x];
   				g[x][i] = ask1(x, (ll)ask0(x, i) * 
   				(i >= 2 ? sf::ask0(v, i - 2) : 1) % mod);
   			}
   			if (L <= mx[v] + 2) continue; 
   			if (!p[v]) lim[x] = max(mx[v] + 3, L - mx[x]), zero[x] = ask1(x, 0);
   			else
   			{
   				mul[x] = (ll)mul[x] * p[v] % mod; add[x] = (ll)add[x] * p[v] % mod;
   				imul[x] = (ll)imul[x] * inv[v] % mod;
   				for (int i = st; i <= ed; i++)
   				g[x][i] = ask1(x, (ll)ask0(x, i) * inv[v] % mod);
   			}
   		}
   		add[x] = plu(add[x], 1); 
   		if (L - mx[x] <= 0) g[x][0] = ask1(x, 1);
   		for (auto v : adj[u]) dfs4(v);
   	}	
   	
   	inline void begin()
   	{
   		mul[1] = imul[1] = add[1] = 1;
   		lim[1] = n + 1; init(1);
   	}
}

int main()
{
   	int i, x, y, j;
   	read(n); read(L); read(k); mx[0] = -1;
   	for (i = 1; i < n; i++) 
   	{
   		read(x); read(y);
   		a[i].x = x; a[i].y = y;
   		h[x].pb(y); h[y].pb(x);
   	}
   	if (L == 0)
   	{
   		cout << n << endl;
   		return 0;
   	}
   	dfs0(1, 0);
   	for (i = 1; i < n; i++)
   	{
   		x = a[i].x; y = a[i].y;
   		if (fa[y] == x) adj[x].pb(y);
   		else adj[y].pb(x);
   	}
   	dfs1(1); dfs2(1); prepare(); 
   	sf::init(1); sf::dfs3(1);
   	it = tmp2 + 2;
   	sg::begin(); sg::dfs4(1);
   	cout << ans << endl;
   	fclose(stdin);
   	fclose(stdout);
   	return 0;
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值