[SDOI2015]约数个数和

problem

  • d ( x ) d(x) d(x) x x x 的约数个数,求: a n s = ∑ i = 1 n ∑ j = 1 m d ( i j ) ans=\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij) ans=i=1nj=1md(ij)
  • 每个读入文件有 T T T 组测试数据, T , n , m ≤ 50000 T,n,m≤50000 T,n,m50000

Solution

  • 众所周知
  • d ( i j ) = ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = 1 ] d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1] d(ij)=xiyj[gcd(x,y)=1]
  • 证明:
  • 考虑每个数对 ( x , y ) (x,y) (x,y) 对应的约数是什么。
  • 因为 g c d ( x , y ) = 1 gcd(x,y)=1 gcd(x,y)=1,所以对于任意一个质因子 p p p,要么 x x x 含有 p p p,要么 y y y 含有 p p p,不可能 x , y x,y x,y 同时含有 p p p
  • 如果包含 p p p 的是 x x x x x x含有 a a a 个质因子,那么对应约数中含有 a a a 个质因子 p p p
  • 否则设 i i i 含有 b b b 个质因子 p p p y y y 含有 c c c 个质因子 p p p,那么对应约数中含有 b + c b+c b+c 个质因子 p p p
  • 因此数对 ( x , y ) (x,y) (x,y) 一一对应了 i j ij ij 的每个约数。

  • 那么下面开始推式子:
  • a n s = ∑ i = 1 n ∑ j = 1 m ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = 1 ] ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}[gcd(x,y)=1] ans=i=1nj=1mxiyj[gcd(x,y)=1]
  • 我们把 [ g c d ( x , y ) = 1 ] [gcd(x,y)=1] [gcd(x,y)=1] 换成含 μ μ μ 的形式,然后我们枚举 x , y x,y x,y 分别是 d d d 的几倍:
  • a n s = ∑ d = 1 m i n ( n , m ) μ ( d ) ∑ x = 1 ⌊ n d ⌋ ⌊ ⌊ n d ⌋ x ⌋ ∑ y = 1 ⌊ m d ⌋ ⌊ ⌊ n d ⌋ y ⌋ ans=\sum_{d=1}^{min(n,m)}μ(d)\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{\lfloor\frac{n}{d}\rfloor}{x}\rfloor\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{\lfloor\frac{n}{d}\rfloor}{y}\rfloor ans=d=1min(n,m)μ(d)x=1dnxdny=1dmydn
  • 显然不同的 ⌊ n d ⌋ \lfloor\frac{n}{d}\rfloor dn 只有 O ( n ) O(\sqrt n) O(n ) 种(把 n n n 换成 m m m 也一样)。
  • 那么我们用 o ( n n ) o(n\sqrt n) o(nn ) 的时间预处理出所有的 ∑ x = 1 n ⌊ ⌊ n d ⌋ x ⌋ \sum_{x=1}^{n}\lfloor\frac{\lfloor\frac{n}{d}\rfloor}{x}\rfloor x=1nxdn,然后对 ⌊ n d ⌋ \lfloor\frac{n}{d}\rfloor dn 整除分块,就可以 O ( T n ) O(T\sqrt n) O(Tn ) 回答所有询问。

Code

#include <bits/stdc++.h>

using namespace std;

#define ll long long

const int e = 1e5 + 5, lim = 50000;
int n, m;
ll ans, f[e], sum[e], miu[e];
bool b[e];

inline void init()
{
   int i, j;
   miu[1] = 1;
   for (i = 2; i <= lim; i++) miu[i] = 1;
   for (i = 2; i <= lim; i++)
   if (!b[i])
   {
   		miu[i] = -1;
   		for (j = 2 * i; j <= lim; j += i)
   		{
   			if ((j / i) % i == 0) miu[j] = 0;
   			else miu[j] *= -1;
   			b[j] = 1;
   		}
   }
   for (i = 1; i <= lim; i++)
   for (j = i; j <= lim; j += i)
   f[j]++;
   for (i = 1; i <= lim; i++)
   {
   		sum[i] = sum[i - 1] + miu[i];
   		f[i] += f[i - 1];
   }
}

int main()
{
   init();
   int i, tst, j;
   scanf("%d", &tst);
   while (tst--)
   {
   	scanf("%d%d", &n, &m);
   	ans = 0;
   	int tmp = min(n, m);
   	for (i = 1; i <= tmp; i = j + 1)
   	{
   		j = min(n / (n / i), m / (m / i));
   		ans += (sum[j] - sum[i - 1]) * f[n / i] * f[m / i];
   	}
   	printf("%lld\n", ans);
   }
   return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值