专题二、关于和式的探讨(3)—— 多重和式

本文详细分析了和式的求解方法,特别是多重和式。通过交换求和次序的基本法则,展示了如何简化二重和式,包括通项和实际数字的和式。文章还讨论了和式与递归式的关系,并提供了封闭形式的解,如一般分配律的应用和包含实际数字的和式的计算。最后,通过实例展示了如何利用这些技巧解决特定类型的和式问题。
摘要由CSDN通过智能技术生成

在这个专题中,我们将探讨和式与递归式的关系,建立起和式的一般性求解方法,并探讨和式与微积分的关系,体会离散数学与连续数学之间的联系。

参考资料:《具体数学 第 2 2 2 版》

三、多重和式

一个和式的项可以用两个或者更多的指标来指定,由此就引出了多重和式的求解问题。我们以一个有九项的二重和式为引,来探讨多重和式的处理技术。
∑ 1 ≤ j , k ≤ 3 a j b k = a 1 b 1 + a 1 b 2 + a 1 b 3 + a 2 b 1 + a 2 b 2 + a 2 b 3 + a 3 b 1 + a 3 b 2 + a 3 b 3 \sum_{1 \le j, k \le 3} a_j b_k = a_1b_1 + a_1 b_2 + a_1 b_3 + a_2 b_1 + a_2 b_2 + a_2 b_3 + a_3 b_1 + a_3 b_2 + a_3 b_3 1j,k3ajbk=a1b1+a1b2+a1b3+a2b1+a2b2+a2b3+a3b1+a3b2+a3b3

1. 交换求和次序

多于一个指标的和式可以首先对它的任何一个指标求和,在这方面,我们有一个称为交换求和次序的基本法则,本质上是结合律的推广:
∑ j ∑ k a j , k [ P ( j , k ) ] = ∑ P ( j , k ) a j , k = ∑ k ∑ j a j , k [ P ( j , k ) ] \begin{gather} \sum_{j} \sum_{k} a_{j, k} [P(j, k)] = \sum_{P(j, k)} a_{j, k} = \sum_{k} \sum_{j} a_{j, k} [P(j, k)] \end{gather} jkaj,k[P(j,k)]=P(j,k)aj,k=kjaj,k[P(j,k)]实践中,当我们想用封闭形式计算一个二重和式时,通常先对一个指标求和会比先对另一个指标求和更容易些,因此我们要选择更方便的求和顺序。开始给出的九个项的和式是处理二重和式的一个很好的例子,它的简化程序是我们对 ∑ ∑ \sum \sum ∑∑ 进行处理的典型代表:
∑ 1 ≤ j , k ≤ 3 a j b k = ∑ j , k a j b k [ 1 ≤ j , k ≤ 3 ] = ∑ j ( ∑ k a j b k [ 1 ≤ j ≤ 3 ] [ 1 ≤ k ≤ 3 ] ) = ∑ j ( a j [ 1 ≤ j ≤ 3 ] ∑ k b k [ 1 ≤ k ≤ 3 ] ) = ( ∑ j a j [ 1 ≤ j ≤ 3 ] ) ( ∑ k b k [ 1 ≤ k ≤ 3 ] ) = ( ∑ j = 1 3 a j ) ( ∑ k = 1 3 b k ) \begin{split} \sum_{1 \le j, k \le 3} a_j b_k &= \sum_{j, k} a_j b_k [1 \le j, k \le 3] \\ &= \sum_{j} \bigg( \sum_{k} a_j b_k [1 \le j \le 3] [1 \le k \le 3] \bigg) \\ &= \sum_{j} \bigg( a_j [1 \le j \le 3] \sum_{k} b_k [1 \le k \le 3] \bigg) \\ &= \bigg( \sum_{j} a_j [1 \le j \le 3] \bigg) \bigg( \sum_{k} b_k [1 \le k \le 3] \bigg) \\ &= \bigg( \sum_{j = 1}^{3} a_j \bigg) \bigg( \sum_{k = 1}^{3} b_k \bigg) \end{split} 1j,k3ajbk=j,kajbk[1j,k3]=j(kajbk[1j3][1k3])=j(aj[1j3]kbk[1k3])=(jaj[1j3])(kbk[1k3])=(j=13aj)(k=13bk)

  • 第一行表示没有任何特殊次序的九项之和;
  • 第二行将它们分成了三组: ( a 1 b 1 + a 1 b 2 + a 1 b 3 ) + ( a 2 b 1 + a 2 b 2 + a 2 b 3 ) + ( a 3 b 1 + a 3 b 2 + a 3 b 3 ) (a_1 b_1 + a_1 b_2 + a_1 b_3) + (a_2 b_1 + a_2 b_2 + a_2 b_3) + (a_3 b_1 + a_3 b_2 + a_3 b_3) (a1b1+a1b2+a1b3)+(a2b1+a2b2+a2b3)+(a3b1+a3b2+a3b3)
  • 第三行利用分配律逐个提取出公共因子 a a a,因为 a a a 的指标 j j j k k k 无关, a 1 ( b 1 + b 2 + b 3 ) + a 2 ( b 1 + b 2 + b 3 ) + a 3 ( b 1 + b 2 + b 3 ) a_1 (b_1 + b_2 + b_3) + a_2 (b_1 + b_2 + b_3) + a_3 (b_1 + b_2 + b_3) a1(b1+b2+b3)+a2(b1+b2+b3)+a3(b1+b2+b3)
  • 第四行则提取出对 j j j 的每一个值都出现的因子 ( b 1 + b 2 + b 3 ) (b_1 + b_2 + b_3) (b1+b2+b3),最终形成 ( a 1 + a 2 + a 3 ) ( b 1 + b 2 + b 3 ) (a_1 + a_2 + a_3)(b_1 + b_2 + b_3) (a1+a2+a3)(b1+b2+b3) 的形式;
  • 最后一行则是第四行的另一种表达方式。

利用这一推导方法,我们可以证明一般分配律
∑ j ∈ J k ∈ K a j b k = ( ∑ j ∈ J a j ) ( ∑ k ∈ K b k ) \begin{gather} \sum_{ \begin{subarray}{l} j \in J \\ k \in K \end{subarray}} a_j b_k = \bigg( \sum_{j \in J} a_j \bigg) \bigg( \sum_{k \in K} b_k \bigg) \end{gather} jJkKajbk=(jJaj)(kKbk)

  • 交换求和次序的基本法则 ( 1 ) (1) (1) 有两种变形,首先是简易型公式,适用于 j j j k k k 的范围相互无关的情形:
    ∑ j ∈ J ∑ k ∈ K a j , k = ∑ j ∈ J k ∈ K a j , k = ∑ k ∈ K ∑ j ∈ J a j , k \begin{gather} \sum_{j \in J} \sum_{k \in K} a_{j, k} = \sum_{\begin{subarray}{l} j \in J \\ k \in K \end{subarray}} a_{j, k} = \sum_{k \in K} \sum_{j \in J} a_{j, k} \end{gather} jJkKaj,k=jJkKaj,k=kKjJaj,k
  • 复杂型公式适用于内和的范围与外和的指标变量有关的情形:
    ∑ j ∈ J ∑ k ∈ K ( j ) a j , k = ∑ k ∈ K ′ ∑ j ∈ J ′ ( k ) a j , k \begin{gather} \sum_{j \in J} \sum_{k \in K(j)} a_{j, k} = \sum_{k \in K'} \sum_{j \in J'(k)} a_{j, k} \end{gather} jJkK(j)aj,k=kKjJ(k)aj,k

这里的集合 J J J K ( j ) K(j) K(j) K ′ K' K J ′ ( k ) J'(k) J(k) 必须以下面的方式相关联: [ j ∈ J ] [ k ∈ K ( j ) ] = [ k ∈ K ′ ] [ j ∈ J ′ ( k ) ] [j \in J] [k \in K(j)] = [k \in K'] [j \in J'(k)] [jJ][kK(j)]=[kK][jJ(k)]。这里给出一个常用的因子分解方程 [ 1 ≤ j ≤ n ] [ j ≤ k ≤ n ] = [ 1 ≤ j ≤ k ≤ n ] = [ 1 ≤ k ≤ n ] [ 1 ≤ j ≤ k ] [1 \le j \le n] [j \le k \le n] = [1 \le j \le k \le n] = [1 \le k \le n] [1 \le j \le k] [1jn][jkn]=[1jkn]=[1kn][1jk],根据这个艾弗森方程,我们可以写出如下的和式:
∑ j = 1 n ∑ k = j n a j , k = ∑ 1 ≤ j ≤ k ≤ n a j , k = ∑ k = 1 n ∑ j = 1 k a j , k \begin{gather} \sum_{j = 1}^{n} \sum_{k = j}^{n} a_{j, k} = \sum_{1 \le j \le k \le n} a_{j, k} = \sum_{k = 1}^{n} \sum_{j = 1}^{k} a_{j, k} \end{gather} j=1nk=jnaj,k=1jknaj,k=k=1nj=1kaj,k

2. 包含通项的多重和式

接下来我们考虑一个由通项 a j a k a_j a_k ajak 组成的 n × n n \times n n×n 的阵列:
[ a 1 a 1 a 1 a 2 a 1 a 3 ⋯ a 1 a n a 2 a 1 a 2 a 2 a 2 a 3 ⋯ a 2 a n a 3 a 1 a 3 a 2 a 3 a 3 ⋯ a 3 a n ⋮ ⋮ ⋮ ⋱ ⋮ a n a 1 a n a 2 a n a 3 ⋯ a n a n ] \begin{bmatrix} a_1 a_1 & a_1 a_2 & a_1 a_3 & \cdots & a_1 a_n \\ a_2 a_1 & a_2 a_2 & a_2 a_3 & \cdots & a_2 a_n \\ a_3 a_1 & a_3 a_2 & a_3 a_3 & \cdots & a_3 a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n a_1 & a_n a_2 & a_n a_3 & \cdots & a_n a_n \\ \end{bmatrix} a1a1a2a1a3a1ana1a1a2a2a2a3a2ana2a1a3a2a3a3a3ana3a1ana2ana3ananan 我们的目的是对 S ▽ = ∑ 1 ≤ j ≤ k ≤ n a j a k S_{\triangledown} = \sum_{1 \le j \le k \le n} a_j a_k S=1jknajak 求一个简单的公式,它是这个阵列的主对角线及其上方的所有元素之和。由于 a j a k = a k a j a_j a_k = a_k a_j ajak=akaj,故此阵列关于它的主对角线是对称的,从而 S ▽ S_{\triangledown} S 近似等于所有元素和的一半,于是我们有 S ▽ = ∑ 1 ≤ j ≤ k ≤ n a j a k = ∑ 1 ≤ k ≤ j ≤ n a k a j = ∑ 1 ≤ k ≤ j ≤ n a j a k = S △ S_{\triangledown} = \sum_{1 \le j \le k \le n} a_j a_k = \sum_{1 \le k \le j \le n} a_k a_j = \sum_{1 \le k \le j \le n} a_j a_k = S_{\triangle} S=1jknajak=1kjnakaj=1kjnajak=S,因此我们可以将 ( j , k ) (j, k) (j,k) 更名为 ( k , j ) (k, j) (k,j)

此外,由于 [ 1 ≤ j ≤ k ≤ n ] + [ 1 ≤ k ≤ j ≤ n ] = [ 1 ≤ j , k ≤ n ] + [ 1 ≤ j = k ≤ n ] [1 \le j \le k \le n] + [1 \le k \le j \le n] = [1 \le j, k \le n] + [1 \le j = k \le n] [1jkn]+[1kjn]=[1j,kn]+[1j=kn],我们就有 2 S ▽ = S ▽ + S △ = ∑ 1 ≤ j , k ≤ n a j a k + ∑ 1 ≤ j = k ≤ n a j a k 2 S_{\triangledown} = S_{\triangledown} + S_{\triangle} = \sum_{1 \le j, k \le n} a_j a_k + \sum_{1 \le j = k \le n} a_j a_k 2S=S+S=1j,knajak+1j=knajak。根据一般分配律 ( 2 ) (2) (2),第一个和式等于 ( ∑ j = 1 n a j ) ( ∑ k = 1 n a k ) = ( ∑ k = 1 n a k ) 2 \big( \sum_{j = 1}^{n} a_j \big) \big( \sum_{k = 1}^{n} a_k \big) = \big( \sum_{k = 1}^{n} a_k \big)^2 (j=1naj)(k=1nak)=(k=1nak)2,而第二个和式等于 ∑ k = 1 n a k 2 \sum_{k = 1}^{n} a_k^2 k=1nak2。于是我们有
S ▽ = ∑ 1 ≤ j ≤ k ≤ n a j a k = 1 2 ( ( ∑ k = 1 n a k ) 2 + ∑ k = 1 n a k 2 ) \begin{gather} S_{\triangledown} = \sum_{1 \le j \le k \le n} a_j a_k = \frac{1}{2} \Bigg( \bigg( \sum_{k = 1}^{n} a_k \bigg)^2 + \sum_{k = 1}^{n} a_k^2 \Bigg) \end{gather} S=1jknajak=21((k=1nak)2+k=1nak2)

下面我们来研究另外一个二重和式:
S = ∑ 1 ≤ j < k ≤ n ( a k − a j ) ( b k − b j ) S = \sum_{1 \le j < k \le n} (a_k - a_j) (b_k - b_j) S=1j<kn(akaj)(bkbj)

当交换 j j j k k k 时,我们仍然有对称性: S = ∑ 1 ≤ k < j ≤ n ( a j − a k ) ( b j − b k ) = ∑ 1 ≤ k < j ≤ n ( a k − a j ) ( b k − b j ) S = \sum_{1 \le k < j \le n} (a_j - a_k) (b_j - b_k) = \sum_{1 \le k < j \le n} (a_k - a_j) (b_k - b_j) S=1k<jn(ajak)(bjbk)=1k<jn(akaj)(bkbj),故而可以将 S S S 与自己相加,利用恒等式 [ 1 ≤ j < k ≤ n ] + [ 1 ≤ k < j ≤ n ] = [ 1 ≤ j , k ≤ n ] − [ 1 ≤ j = k ≤ n ] [1 \le j < k \le n] + [1 \le k < j \le n] = [1 \le j, k \le n] - [1 \le j = k \le n] [1j<kn]+[1k<jn]=[1j,kn][1j=kn] 可以得到 2 S = ∑ 1 ≤ j , k ≤ n ( a j − a k ) ( b j − b k ) − ∑ 1 ≤ j = k ≤ n ( a j − a k ) ( b j − b k ) 2 S = \sum_{1 \le j, k \le n} (a_j - a_k) (b_j - b_k) - \sum_{1 \le j = k \le n} (a_j - a_k) (b_j - b_k) 2S=1j,kn(ajak)(bjbk)1j=kn(ajak)(bjbk)。这里第二个和式为零,我们只需要研究第一个和式即可。将第一个和式展开成四个单独的和式,每一个都是简易型的:
∑ 1 ≤ j , k ≤ n ( a j − a k ) ( b j − b k ) = ∑ 1 ≤ j , k ≤ n a j b j − ∑ 1 ≤ j , k ≤ n a j b k − ∑ 1 ≤ j , k ≤ n a k b j + ∑ 1 ≤ j , k ≤ n a k b k = 2 ∑ 1 ≤ j , k ≤ n a k b k − 2 ∑ 1 ≤ j , k ≤ n a j b k = 2 ∑ 1 ≤ k ≤ n ∑ 1 ≤ j ≤ n a k b k − 2 ∑ 1 ≤ j , k ≤ n a j b k = 2 ∑ 1 ≤ k ≤ n a k b k ∑ 1 ≤ j ≤ n 1 − 2 ∑ 1 ≤ j , k ≤ n a j b k = 2 n ∑ 1 ≤ k ≤ n a k b k − 2 ( ∑ k = 1 n a k ) ( ∑ k = 1 n b k ) \begin{split} \sum_{1 \le j, k \le n} (a_j - a_k) (b_j - b_k) &= \sum_{1 \le j, k \le n} a_j b_j - \sum_{1 \le j, k \le n} a_j b_k - \sum_{1 \le j, k \le n} a_k b_j + \sum_{1 \le j, k \le n} a_k b_k \\ &= 2 \sum_{1 \le j, k \le n} a_k b_k - 2 \sum_{1 \le j, k \le n} a_j b_k \\ &= 2 \sum_{1 \le k \le n} \sum_{1 \le j \le n} a_k b_k - 2 \sum_{1 \le j, k \le n} a_j b_k \\ &= 2 \sum_{1 \le k \le n} a_k b_k \sum_{1 \le j \le n} 1 - 2 \sum_{1 \le j, k \le n} a_j b_k \\ &= 2n \sum_{1 \le k \le n} a_k b_k - 2 \bigg(\sum_{k = 1}^{n} a_k \bigg) \bigg( \sum_{k = 1}^{n} b_k \bigg) \end{split} 1j,kn(ajak)(bjbk)=1j,knajbj1j,knajbk1j,knakbj+1j,knakbk=21j,knakbk21j,knajbk=21kn1jnakbk21j,knajbk=21knakbk1jn121j,knajbk=2n1knakbk2(k=1nak)(k=1nbk)于是我们就得到了一个有趣的公式:
( ∑ k = 1 n a k ) ( ∑ k = 1 n b k ) = n ∑ k = 1 n a k b k − ∑ 1 ≤ j < k ≤ n ( a k − a j ) ( b k − b j ) \begin{gather} \bigg(\sum_{k = 1}^{n} a_k \bigg) \bigg( \sum_{k = 1}^{n} b_k \bigg) = n \sum_{k = 1}^{n} a_k b_k - \sum_{1 \le j < k \le n} (a_k - a_j) (b_k - b_j) \end{gather} (k=1nak)(k=1nbk)=nk=1nakbk1j<kn(akaj)(bkbj)这个恒等式本质上是切比雪夫单调不等式的一个特例:
{ ( ∑ k = 1 n a k ) ( ∑ k = 1 n b k ) ≤ n ∑ k = 1 n a k b k , a 1 ≤ ⋯ ≤ a n 且 b 1 ≤ ⋯ ≤ b n ( ∑ k = 1 n a k ) ( ∑ k = 1 n b k ) ≥ n ∑ k = 1 n a k b k , a 1 ≤ ⋯ ≤ a n 且 b 1 ≥ ⋯ ≥ b n \begin{cases} \bigg(\sum_{k = 1}^{n} a_k \bigg) \bigg( \sum_{k = 1}^{n} b_k \bigg) \le n \sum_{k = 1}^{n} a_k b_k, & a_1 \le \cdots \le a_n 且 b_1 \le \cdots \le b_n \\ \bigg(\sum_{k = 1}^{n} a_k \bigg) \bigg( \sum_{k = 1}^{n} b_k \bigg) \ge n \sum_{k = 1}^{n} a_k b_k, & a_1 \le \cdots \le a_n 且 b_1 \ge \cdots \ge b_n \end{cases} (k=1nak)(k=1nbk)nk=1nakbk,(k=1nak)(k=1nbk)nk=1nakbk,a1anb1bna1anb1bn

上一篇文章中的交换律我们知道,如果 p ( k ) p(k) p(k) 是这些整数的任意一个排列,则 ∑ k ∈ K a k = ∑ p ( k ) ∈ K a p ( k ) \sum_{k \in K} a_k = \sum_{p(k) \in K} a_{p(k)} kKak=p(k)Kap(k)。如果 f f f 是一个任意的函数 f : J → K f: J \to K f:JK,它将整数 j ∈ J j \in J jJ 变成整数 f ( j ) ∈ K f(j) \in K f(j)K,那么用 f ( j ) f(j) f(j) 替换 k k k 我们会得到怎样的结果呢?

指标替换的一般公式是
∑ j ∈ J a f ( j ) = ∑ k ∈ K a k # f − ( k ) \begin{gather} \sum_{j \in J} a_{f(j)} = \sum_{k \in K} a_k \# f^- (k) \end{gather} jJaf(j)=kKak#f(k)其中, # f − ( k ) \# f^-(k) #f(k) 表示集合 f − ( k ) = { j ∣ f ( j ) = k } f^- (k) = \{j | f(j) = k\} f(k)={jf(j)=k} 中的元素个数,即使得 f ( j ) f(j) f(j) 等于 k k k j ∈ J j \in J jJ 的值的个数。由于 ∑ j ∈ J [ f ( j ) = k ] = # f − ( k ) \sum_{j \in J} [f(j) = k] = \# f^- (k) jJ[f(j)=k]=#f(k),通过交换求和次序可以证明公式 ( 8 ) (8) (8)
∑ j ∈ J a f ( j ) = ∑ j ∈ J k ∈ K a k [ f ( j ) = k ] = ∑ k ∈ K a k ∑ j ∈ J [ f ( j ) = k ] \sum_{j \in J} a_{f(j)} = \sum_{\begin{subarray}{l} j \in J \\ k \in K \end{subarray}} a_k [f(j) = k] = \sum_{k \in K} a_k \sum_{j \in J} [f(j) = k] jJaf(j)=jJkKak[f(j)=k]=kKakjJ[f(j)=k]

f f f J J J K K K 之间的一一对应关系时,对所有的 k k k 都有 # f − ( k ) = 1 \# f^- (k) = 1 #f(k)=1,一般公式 ( 8 ) (8) (8) 就转化成为 ∑ j ∈ J a f ( j ) = ∑ f ( j ) ∈ K a f ( j ) = ∑ k ∈ K a k \sum_{j \in J} a_{f(j)} = \sum_{f(j) \in K} a_{f(j)} = \sum_{k \in K} a_k jJaf(j)=f(j)Kaf(j)=kKak,这就是上一篇文章中给出的交换律,不过形式稍有变化。

3. 包含实际数字的多重和式

接下来我们研究一个包含实际数字的二重和式:
S n = ∑ 1 ≤ j < k ≤ n 1 k − j S_n = \sum_{1 \le j < k \le n} \frac{1}{k - j} Sn=1j<knkj1容易计算得到 S 1 = 0 S_1 = 0 S1=0 S 2 = 1 S_2 = 1 S2=1 S 3 = 5 / 2 S_3 = 5 / 2 S3=5/2。计算二重和式的正规方法是首先对 j j j 或者 k k k 求和,下面我们分别探讨两种选择下的计算过程,是否都能得到我们想要的封闭形式。
S n = ∑ 1 ≤ k ≤ n ∑ 1 ≤ j < k 1 k − j (首先对 j 求和) = ∑ 1 ≤ k ≤ n ∑ 1 ≤ k − j < k 1 j (用 k − j 替换 j ) = ∑ 1 ≤ k ≤ n ∑ 0 < j ≤ k − 1 1 j (简化 j 的界限) = ∑ 1 ≤ k ≤ n H k − 1 ( H k − 1 的定义) = ∑ 1 ≤ k + 1 ≤ n H k (用 k + 1 替换 k ) = ∑ 0 ≤ k < n H k (简化 k 的界限) \begin{split} S_n &= \sum_{1 \le k \le n} \sum_{1 \le j < k} \frac{1}{k - j}(首先对 j 求和)\\ &= \sum_{1 \le k \le n} \sum_{1 \le k - j < k} \frac{1}{j}(用 k - j 替换 j)\\ &= \sum_{1 \le k \le n} \sum_{0 < j \le k - 1} \frac{1}{j}(简化 j 的界限)\\ &= \sum_{1 \le k \le n} H_{k - 1} (H_{k - 1} 的定义)\\ &= \sum_{1 \le k + 1 \le n} H_k (用 k + 1 替换 k) \\ &= \sum_{0 \le k < n} H_k(简化 k 的界限) \end{split} Sn=1kn1j<kkj1(首先对j求和)=1kn1kj<kj1(用kj替换j=1kn0<jk1j1(简化j的界限)=1knHk1Hk1的定义)=1k+1nHk(用k+1替换k=0k<nHk(简化k的界限)至此,我们已经无路可走了。下面尝试另一种选择:
S n = ∑ 1 ≤ j ≤ n ∑ j < k ≤ n 1 k − j (首先对 k 求和) = ∑ 1 ≤ j ≤ n ∑ j < k + j ≤ n 1 k (用 k + j 替换 k ) = ∑ 1 ≤ j ≤ n ∑ 0 < k ≤ n − j 1 k (简化 k 的界限) = ∑ 1 ≤ j ≤ n H n − j ( H n − j 的定义) = ∑ 1 ≤ n − j ≤ n H j (用 n − j 替换 j ) = ∑ 0 ≤ j < n H j (简化 j 的界限) \begin{split} S_n &= \sum_{1 \le j \le n} \sum_{j < k \le n} \frac{1}{k - j}(首先对 k 求和)\\ &= \sum_{1 \le j \le n} \sum_{j < k + j \le n} \frac{1}{k}(用 k + j 替换 k)\\ &= \sum_{1 \le j \le n} \sum_{0 < k \le n - j} \frac{1}{k}(简化 k 的界限)\\ &= \sum_{1 \le j \le n} H_{n - j} (H_{n - j} 的定义)\\ &= \sum_{1 \le n - j \le n} H_j (用 n - j 替换 j) \\ &= \sum_{0 \le j < n} H_j(简化 j 的界限) \end{split} Sn=1jnj<knkj1(首先对k求和)=1jnj<k+jnk1(用k+j替换k=1jn0<knjk1(简化k的界限)=1jnHnjHnj的定义)=1njnHj(用nj替换j=0j<nHj(简化j的界限)我们走到了同样的死胡同里。不过还有另外一种做法,那就是在决定要将 S n S_n Sn 转化成二重和式之前先用 k + j k + j k+j 替换 k k k
S n = ∑ 1 ≤ j < k ≤ n 1 k − j (原始给定的和式) = ∑ 1 ≤ j < k + j ≤ n 1 k (用 k + j 替换 k ) = ∑ 1 ≤ k ≤ n ∑ 1 ≤ j ≤ n − k 1 k (首先对 j 求和) = ∑ 1 ≤ k ≤ n n − k k (关于 j 的和与 j 本身无关,只和 j 的范围相关) = ∑ 1 ≤ k ≤ n n k − ∑ 1 ≤ k ≤ n 1 (结合律) = n ( ∑ 1 ≤ k ≤ n 1 k ) − n = n H n − n ( H n 的定义) \begin{split} S_n &= \sum_{1 \le j < k \le n} \frac{1}{k - j}(原始给定的和式)\\ &= \sum_{1 \le j < k + j \le n} \frac{1}{k}(用 k + j 替换 k)\\ &= \sum_{1 \le k \le n} \sum_{1 \le j \le n - k} \frac{1}{k}(首先对 j 求和)\\ &= \sum_{1 \le k \le n} \frac{n - k}{k} (关于 j 的和与 j 本身无关,只和 j 的范围相关)\\ &= \sum_{1 \le k \le n} \frac{n}{k} - \sum_{1 \le k \le n} 1 (结合律) \\ &= n \bigg( \sum_{1 \le k \le n} \frac{1}{k} \bigg) - n \\ &= n H_n - n (H_n 的定义) \end{split} Sn=1j<knkj1(原始给定的和式)=1j<k+jnk1(用k+j替换k=1kn1jnkk1(首先对j求和)=1knknk(关于j的和与j本身无关,只和j的范围相关)=1knkn1kn1(结合律)=n(1knk1)n=nHnnHn的定义)将我们求出的 S n S_n Sn 与前两种方法求出的 “死胡同” 结合起来,可以得到这样一个恒等式:
∑ 0 ≤ k < n H k = n H n − n \begin{gather} \sum_{0 \le k < n} H_k = n H_n - n \end{gather} 0k<nHk=nHnn从代数方式来说,如果我们有一个包含 k + f ( j ) k + f(j) k+f(j) 的二重和式,其中 f f f 是一个任意函数,那么这个例子指出,用 k − f ( j ) k - f(j) kf(j) 替换 k k k 并对 j j j 求和会更容易得到封闭形式的解。

从几何方式来说,我们可以观察 n = 4 n = 4 n=4 的情形下 S n S_n Sn 的形状:
k = 1 k = 2 k = 3 k = 4 j = 1 1 / 1 1 / 2 1 / 3 j = 2 1 / 1 1 / 2 j = 3 1 / 1 j = 4 \begin{matrix} & k = 1 & k = 2 & k = 3 & k = 4 \\ j = 1 & & 1 / 1 & 1 / 2 & 1 / 3 \\ j = 2 & & & 1 / 1 & 1 / 2 \\ j = 3 & & & & 1 / 1 \\ j = 4 & & & & \end{matrix} j=1j=2j=3j=4k=1k=21/1k=31/21/1k=41/31/21/1

  • 我们的第一次尝试是先对 j j j 求和(按列),得到了 H 1 + H 2 + H 3 H_1 + H_2 + H_3 H1+H2+H3
  • 第二次尝试是先对 k k k 求和(按行),得到了 H 3 + H 2 + H 1 H_3 + H_2 + H_1 H3+H2+H1
  • 获得成功的案例,本质上是按照对角线求和,得到 3 / 1 + 2 / 2 + 1 / 3 3 / 1 + 2 / 2 + 1 / 3 3/1+2/2+1/3,这个结果与康托表有着微妙的联系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朔北之忘 Clancy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值