线性回归投影矩阵H的性质

本文探讨了线性回归中的投影矩阵H的性质,包括H的对称性、半正定性,以及它如何将向量投影到X张成的线性空间。此外,还分析了H是否总是可逆,以及其特征值和迹的特性,证明了H的迹等于d + 1,其中d是X的列数。
摘要由CSDN通过智能技术生成

线性回归投影矩阵H的性质

在线性回归中, H = X ( X T X ) − 1 X T H = X(X^T X)^{-1} X^T H=X(XTX)1XT, H 是投影矩阵,将向量y映射到X张成的线性空间中。

H性质有:

  1. H 是对称矩阵, so 存在正交矩阵Q, s.t. H = Q Λ Q T . H = Q\Lambda Q^T. H=QΛQT.

  2. H 总是半正定矩阵.
    对于任意的向量b, Hb 将b投影到Col(X). 那么

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值