MMYOLO目标检测部署(CPU环境,mmcv2.0.1对应pytorch2.0.0)

OpenMMLab的mmdetection库中包含了很多常用的目标检测深度学习算法,记录一下自己尝试部署的过程。

官方教程:15 分钟上手 MMYOLO 目标检测 — MMYOLO 0.6.0 文档

完全按照教程一步步部署环境,最后测试时遇到了问题

报错:ModuleNotFoundError: No module named ‘mmcv._ext‘

查阅后得知大概率是mmcv与pytorch版本不符导致,之前网上很多教程的解决办法是重装mmcv以适配pytorch版本,但mmcv与mmdet等库版本也需对应,且在requirements/mminstall.txt中也要求了指定版本,实际安装后为mmcv2.0.1,故换pytorch版本应更为稳妥。

mmcv>=2.0.0rc4,<2.1.0
mmdet>=3.0.0
mmengine>=0.7.1

由于我想在CPU环境下先跑一下测试,根据官方教程装的pytorch版本是目前最新的torch2.1,后续查阅mmcv2.0官方文档,将 torch版本换为2.0.0版本

# CPU Only
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 cpuonly -c pytorch

将torch版本更换后,其他环境安装均不变,即可解决报错,成功运行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值